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Abstract—Formal dynamic analysis of MPI programs is crit-
ically important since conventional testing tools for message
passing programs do not cover the space of possible non-
deterministic communication matches, thus may miss bugs in the
unexamined execution scenarios. While modern dynamic verifi-
cation techniques guarantee the coverage of non-deterministic
communication matches, they do so indiscriminately, inviting
exponential interleaving explosion. Though the general problem
is difficult to solve, we show that a specialized dynamic analysis
method can be developed for dramatically reducing the number
of interleavings when looking for certain safety properties such as
deadlocks. Our MAAPED (Messaging Application Analysis with
Predictive Error Discovery) tool collects a single program trace
and predicts deadlock presence in other (unexplored) traces of an
MPI program for the same input. MAAPED hinges on initially
computing the potential alternate matches for non-deterministic
communication operations and then analyzes such matches which
may lead to a deadlock. The results collected are encouraging.

I. INTRODUCTION

We examine the problem of efficiently testing Message
Passing Interface (MPI) programs for presence/absence of
deadlocks. The reason for choosing this problem space is that
for a large class of MPI programs, the number of execution
schedules is often exponential large, making the verification
problem of detecting deadlocks prohibitively expensive. There
has been a considerable body of work in formal analysis of
MPI applications. These solutions can be broadly classified
under: model-checking (MPI-SPIN [1]), testing based (MAR-
MOT [2], UMPIRE [3]), and formal dynamic analysis (ISP [4],
[5], DAMPI [6]). We base our work on formal dynamic
analysis tools (such as ISP and DAMPI) since we believe that
the dynamic analysis tools incorporate the best features of
model-checking (coverage) and testing methodologies.

Formal dynamic analysis tools perform a direct-code model
checking and stateless replay of the MPI programs over
the non-deterministic execution space. These tools employ
dynamic partial order reduction (DPOR [7]) technique tailored
to MPI as explained in [4]. While it is true that such tools
achieve a high degree of execution space reduction by not
permuting the order in which deterministic MPI actions are
issued, they have no choice but to exhaustively examine non-
deterministic receives with their potential send matches. The
sheer number of options to explore makes these tools an
expensive choice.

Problem Statement: The problem we formulate and solve
in this paper is the following: Suppose we are given an MPI
program which issues wildcard receive or non-deterministic

probe calls. We assume that the program has only communica-
tion non-determinism: i.e., the code between message passing
calls is assumed to be sequential, and is written in a deter-
ministic manner (e.g., in C/C++) to carry out computations.
We also assume that the choice of which send matches a
wildcard receive does not affect subsequent communications
in the program. Note that when a particular wildcard receive-
send match affects the subsequent control flow of the program,
we must explore all potential matches of that receive call since
distinct matches may result different executions. However, in
programs where above assumptions hold, we would witness
that all the MPI calls from the application are issued in a single
trace. Provided these assumptions are satisfied, we now want to
answer the following question: given a single execution trace
of the program, can we analyze this trace and decide (i) either
that all subsequent execution scenarios are deadlock free, or
(ii) that there exists one alternative execution scenario that will
deadlock? We have observed that in a large class of SPMD
styled MPI programs, the above mentioned assumptions hold.
Since, we would log all the MPI calls from the program in a
single trace, we can successfully infer all the potential matches
of every non-deterministic receive operation. This inference
enables us to solve the problem that we posed above.

II. MAAPED OVERVIEW

MAAPED tool currently discovers deadlocks in MPI pro-
grams. The workflow of the tool is depicted in Figure 1.
A trace of the program is obtained through the PMPI layer
working along with a ISP type scheduler. Using this trace,
the MAAPED match generator component computes an over-
approximate set of matching receive calls for each of the send
operation. Then MAAPED computes the dependencies among
the communication events in the trace such as: (i) program
ordering among events from the same process (ii) fence
orderings enforced by barrier and other blocking operations.
Such dependencies are computed by the dependency construc-
tor component. Using this dependency information among
events, we refine the set of over-approximate match-graph
relation. The dependency information is constructively used
to eliminate the match possibilities that can never manifest in
reality. The refined match-graph is then fed to the deadlock
analysis component which predicts if a deadlock is present in
some alternate interleaving where a particular send call is left
unmatched. Consider the example shown below:
P1: R(*);R(*); R(3);
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Fig. 1. Workflow of MAAPED

P2: S(1);
P3: S(1); S(1);

In this example R(*) is a wildcard receive and R(3) is a receive
from P3. Similarly S(1) is a send to P1. There is a deadlock in
the code, which will manifest only when the first two sends
of P3 match with the first two wildcard receives from P1.
Suppose the first execution completed successfully without
exposing the deadlock (i.e., when send from P2 matched with
one of the two wildcard receives from P1). The MAAPED
tool will first construct the complete matching possibilities
for each send, for instance, P2’s send can match P1’s first
two receives. The dependency constructor will subsequently
construct the dependency that P3’s first send should match
before P3’s second send. This dependency will eliminate the
matching of P3’s second send with P1’s first receive. After
refining the match-graph, the deadlock analyzer will analyze
different matching possibilites and will infer that under certain
matching R(3) can get orphaned (i.e., when both sends from
P3 are matched with the wildcard receives from P1). In this
manner MAAPED predicts the deadlock presence without re-
running the program. MAAPED showed encouraging results
when compared with ISP. The experiments are documented in
Table I. The results illustrate that even though MAAPED can

TABLE I
MAAPED VS ISP RESULTS

Interleaving T(s)
Test Procs Dl? a ISP M’PED b M’PED

DTG-deadlock 5 Yes 3 † 1
√

0.009
Integrate mw 8 No > 3500 1 1.669

Matrix Multiply 8 No 120 1 4.564
Gaussian Elimination 8 No > 20, 000 1 2.68

Floyd Warshall 8 No > 20, 000 1 9.14
a Deadlock b MAAPED † ISP misses the deadlock under optimized run√

MAAPED discovers the deadlock

produce false-alarms, none were found on our benchmarks.
MAAPED detected deadlocks with better timing as compared
to ISP. The time taken by ISP is not shown, however, one
can easily estimate the time taken by ISP to be approximately
equal to the product of total number of interleavings explored
by ISP and the time taken by MAAPED for a single run.

Future Work: MAAPED tool at the moment cannot handle
programs where the communication related control flow is
dependent on a prior wildcard receive match. Further, it cannot
handle programs where communication involves decoding of
the MPI status object (typically used in dynamic load balanc-
ing). We term such type of communication pattern by reply-

channel based communication. We plan to extend the tool to be
able to handle programs that fall under such a class. Further,
we would also work on proving that all deadlocks (without
ommissions) are discovered by the tool without producing any
false alarms for a fixed input.

III. CONCLUSION

We present a dynamic analysis tool that discovers latent MPI
deadlocks in a predictable and efficient manner as opposed to
other dynamic verifiers in the domain and our initial results
appear to be encouraging.
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