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Abstract. Formal dynamic analysis of MPI programs is crucially important in
the context of developing HPC applications. Existing dynamic verification tools
for MPI programs suffer from exponential schedule explosion, especially when
multiple non-deterministic receive statements are issued by a process. In this pa-
per, we focus on detecting message-orphaning deadlocks within MPI programs.
For this analysis target, we describe a sound heuristic that helps avoid schedule
explosion in most practical cases while not missing deadlocks in practice. Our
method hinges on initially computing the potential non-deterministic matches as
conventional dynamic analyzers do, but then including only the entries which
are found relevant to cause a refusal deadlock (essentially a macroscopic-view
persistent-set reduction technique). Experimental results are encouraging.

1 Introduction

The Message Passing Interface (MPI, [16]) is one of the central APIs used in large-
scale high performance computing (HPC) simulations. Most of today’s supercomputers
and high performance clusters are programmed using MPI, and this trend is expected to
continue [12]. There are also embedded system communication standards built around
message passing, such as MCAPI [15]. In this paper, we study the problem of ade-
quately testing message passing programs using formal techniques. While our research
is conducted with MPI-specific details, with relatively minor modifications our results
also apply to other message passing paradigms.

In MPI, message send commands directly address the destination process while
message receives are of two types: either directly address the source process (called
deterministic or specific receives) or may be non-deterministic (or “wildcard”) receives
that can receive from any process. The sends and receives issued by MPI processes that
target the same destination or source from the same process are required to match in
issue order (the “non-overtaking rule of MPI”). At any runtime state of an MPI pro-
gram, all eligible matches between deterministic receives and sends—specifically such
match pairs—commute. This is because all such match pairs have non-overlapping des-
tinations/sources. That is, for deterministic receives Ri and R j, one can match (S i,Ri)
and (S j,R j) in either order. However, non-deterministic receive matches do not, in gen-
eral, commute: at the very least, a non-deterministic receive R(∗) matching a send S i

results in a system state different from when another send S j matches the same receive.



This is not good news for dynamic partial order reduction (DPOR [8]) methods be-
cause in many MPI programs, R(∗) calls occur in sequence (typically in a loop). Thus,
it seems as if any DPOR technique is doomed to examine an exponential number of
interleavings—something that does not bode well for our Exascale computing aspira-
tions in which several message passing APIs (including MPI) are expected to play an
important role. This paper develops a simple but very effective (in practice) heuristic
that avoids this explosion in many cases.

Background and Related Work: It is important to have a balanced portfolio of verifi-
cation tools in any area—including for MPI. Informal testing approaches for MPI (e.g.,
based on schedule perturbation [25]) do not guarantee coverage, and are also highly
redundant because they will, in practice, generate many equivalent schedules (e.g., per-
muting deterministic message matches). While static analyzers for MPI exist (e.g., [1]),
they are known to be unsound (can generate too many false alarms) when used for bug-
hunting, due to their overapproximation of possible message matches. Model-checking
based methods (e.g., MPI-SPIN [19]) can guarantee coverage, but on models of MPI
programs; such models are very difficult to create, and become obsolete with each de-
sign change.

From a designer’s perspective, dynamic formal testing tools are attractive in many
ways: (1) they are sound, (2) they can be made complete with respect to non-determinism
coverage. Formal dynamic verifiers such as ISP [21, 24] and DAMPI [22, 23] take an
approach that integrates the best features of testing tools (ability to run on user appli-
cations) and model checking (message match non-determinism coverage guarantees).
They run the MPI program under the control of verification-oriented scheduling mech-
anisms (a central scheduler for ISP and logical clocks for DAMPI). Thanks to their MPI
semantics-aware algorithms, these tools guarantee non-determinism coverage (e.g., all
the potential matches of a non-deterministic receive) while not bloating the schedule
space with respect to deterministic receive/send matches. They have been shown to
scale up to 1000 MPI processes for many MPI programs (in the case of DAMPI). The
scheduling mechanisms in these tools are robust across all MPI-compliant platforms
and computational delays between communication calls. To the best of our knowledge,
there are no other dynamic analysis tools similar to ISP and DAMPI. However, these dy-
namic verification tools suffer from the aforesaid exponential schedule explosion when
a sequence of R(∗) commands are issued. Therefore, a practical dynamic verification
tool that avoids this schedule explosion and provides reasonable coverage is currently
unavailable. This paper describes such a tool.

Contributions: In this paper, we focus on the problem of detecting orphaning dead-
locks in which an MPI receive is left without a matching send in some MPI program
execution state. Our solution is to modify ISP’s dynamic partial order reduction algo-
rithm called POE (standing for Partial Order avoiding Elusive interleavings, [21]) to
result in a new algorithm called MSPOE (MacroScopic POE). MSPOE applies to MPI
programs that “do not decode data,” i.e., do not employ data dependent control flows,
and do not alter their control flows based on which sends a non-deterministic receive
matches with. The formulation of MSPOE relies on a notion of commuting sends; this
notion results from a macroscopic re-interpretation of the basic tenets of partial or-
der reduction. We measure the efficacy of MSPOE on real examples, and show that
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MSPOE can dramatically reduce the number of interleavings examined. MSPOE is, by
design, incomplete. In practice, MSPOE has caught all the deadlock bugs that ISP has.
A study of any successful large-scale formal software testing or analysis approach (e.g.
[11]) shows that rather than aiming for a theoretically complete algorithm, one almost
always has to aim for “completeness in practice.”3

As an example (Figure 1), consider an MPI program with n+1 processes where each
of the n processes sends a message to the (n + 1)th process. The (n + 1)th process posts n
wildcard receive calls (say in a loop). If we want to completely cover all possible non-
deterministic message matches, we will be forced to examine n! execution schedules.
Observation: Let a call denoted by S i, j(k) is a send call from process i sending to pro-
cess k with the local process program counter (PC) at j. Similarly a receive call sourcing
from process k which is issued by process i indexed at j is denoted by Ri, j(k). A non-
deterministic receive is represented by Ri, j(∗). We will use this notation through the
rest of the paper. For an MPI program that does not decode data and has an orphaned
deterministic receive causing a deadlock, either there must be an unequal number of
sends and receives in some execution path, or the following two conditions must be
satisfied: (1) It employs a process that issues a wildcard receive Rk,l(∗) followed by a
specific receive Rk,l′ ( j); (2) In the execution order, two other processes supply sends
S i,n(k) and S j,m(k). Rk,l(∗) consumes S j,m(k),“the send that was meant for the later ap-
pearing Rk,l′ ( j)”. This will lead to orphaning of Rk,l′ ( j) since there are no more sends
that can match this receive. MSPOE works as follows. It first uses POE to compute the
potential send matches for each MPI non-deterministic receive. It then chooses to in-
clude only some of these sends (called relevant sends—relevant for creating orphaning
deadlocks).
Additional Related Work: One may initially think that our problem is one of symme-
try detection, which has been extensively researched [2, 13, 6, 3]. Symmetry detection
is based on constructing a smaller quotient structure of the system by exploiting the au-
tomorphism in the system’s state space. These are computationally hard problems [2]
which are impractical during dynamic verification of MPI programs. The work in [5]
computes symmetries in communicating programs based on channel graphs and not di-
rectly applicable for our purposes. We have not come across any other effort where a
simple (but highly effective in practice) approach such as MSPOE is studied.
Detailed look at some examples: In Figure 1, the ISP scheduler will explore six in-
terleavings for this example. The six interleavings are illustrated in Figure 2. Note that
solid circles are the states and the directed edges are the match-sets (sets of matching
operations at a state ) signaled to the runtime at that state.

The dotted arrow edges is the first interleaving that ISP explores. However, observe
that the example code has only wildcard receive calls. Thus, as long as all sends com-
mute, such examples cannot have deadlocks and there is no necessity to examine other
schedules. MSPOE will analyze the program in Figure 1 in the following way. MSPOE
will explore the first interleaving as shown by dotted arrows in Figure 2. It will discover
that it did not encounter any deterministic receive calls. Thus, MSPOE will reduce the
persistent-set (refer [9]) of each non-deterministic receive to a singleton set (containing

3 In practice, it seems one can obtain at most two of the following three attributes: sound, com-
plete, scalable.
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P0 P1 P2

S 0,1(2); S 1,1(2); f or(i = 1 to 4)
R2,i(∗);

S 0,2(2); S 1,2(2); end for;

Fig. 1. Deadlock free example
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Fig. 2. State graph for Figure 1

P0 P1 P2 P3 P4

S 0,1(4); S 1,1(4); S 2,1(4); S 3,1(4); R4,1(∗);
R4,2(3);
R4,3(∗);
R4,4(∗);

Fig. 3. Deadlocking example
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the entry that was explored in the current run of the program). (Note that in the Fig-
ure 2, the states that are within the dotted box will witness their persistent-set reduced.
For the rest of the states, the persistent-set is a singleton-set to begin with.) Since, each
persistent-set has already been reduced to singleton set by MSPOE, the ISP scheduler’s
search will terminate with only one interleaving.
In the example of Figure 3, there is a deadlock introduced by the use of the determin-
istic receive call. as shown in Figure 4. In Figure 4 if R4,1 were to match S 3,1 (right-
most transition from the initial node), the subsequent deterministic call (R4,2) will be
orphaned, thus creating a refusal deadlock. ISP would explore all the matches starting
from leftmost choice shown in Figure 4 and then moving right with every new run, gen-
erating four interleavings before finding the deadlock. MSPOE will, on the other hand,
choose S 3,1 as the next relevant send to explore after any initial run. In this example,
the deadlock will be detected within two interleavings.

2 Preliminaries

Let P be a concurrent MPI program and Pi is the ith sequential process executing P
where i ∈ PID and PID = {0, 1, ..., n}. We assume the program is executed with finite
many processes. Each Pi is Li instructions long. Let l denote the program counter(PC)
array; thus, li ∈ l denotes the PC value for the ith process. The jth MPI command in the
ith process is denoted pi, j where j ∈ Li.

A non-blocking send call issued by the process Pi with a program counter j with a
destination as Pk is denoted as S i,li (k). A non-blocking send returns a “handle” that is
waited upon by a later issued wait (W) operation. The send event occurs somewhere
between S i,li (k) and W; the “occurrence” of a send is really the match event between a
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send and its receive. In our presentation, we suppress the W calls (but our implementa-
tion handles them). A blocking send call’s effect is obtained by placing W immediately
after the send. Similarly, a non-blocking receive call is written as Ri,li (k). If the receive
is a wildcard then its denoted as Ri,li (∗). An MPI Barrier operation by process i is rep-
resented as Bi, j where j is the li for that process. Let Op be the set of MPI operations
comprised of S i, j(k), Ri, j(k), Ri, j(∗), W and Bi, j, for all possible i, j, k. Note that an op-
eration belonging to Op is a visible operation and all other operations (non MPI) are
invisible. A visible operation is one that is intercepted by the ISP scheduler.

The execution state of an MPI program together with the MPI runtime is modeled
using σ ∈ S where σ = 〈I, P,M, l〉 that consists of issued (I ⊆ Op) instructions,
persistent-set (P) set, matched (M ⊆ I) instructions, and the PC array l. This is also the
state that the ISP scheduler goes by (probing the internal state of the MPI processes and
runtime is impractical). The set of instructions in M \ I are the enabled ones. Persistent-
set P at a state σ ∈ S (denoted by Pσ) is a set of match-set moves. A match-set at a state
can either be (i) A matching send and receive or (ii) Matching barriers. Since match-set
transitions the system from one state to a subsequent state, we view match-set moves as
the transitions of the MPI program. The terms match-sets and transitions in this paper
would be used interchangeably. Thus, when a send call S i,li (k) matches a receive call
Rk,lk (i) at σ, the associated transition t ∈ Pσ is represented by 〈S i,li (k), Rk,lk (i)〉. Let T
denote the set of all transitions of the system. A t ∈ T enabled at state s which when
executed results in a unique successor state s′, written as s

t
−→ s′ . The successor state is

also represented by the following: s′ = t(s). We define the whole MPI program as a state
transition system AG = (S,T , s0). where s0 is the starting state of the system. Further
details are available at [17] (not necessary to follow our main ideas in this paper).

2.1 Nature of transitions in a Persistent-set

A persistent-set at a state can contain multiple transitions. Persistent-sets are constructed
in a prioritized manner as discussed in our previous work [20] (appropriately summa-
rized, as needed, in this paper). The only possibility of a persistent-set containing mul-
tiple transitions is when there is a wildcard receive involved. When all the potential
senders to a wildcard receive R(∗) are determined at an execution state, ISP forms a
transition involving R(∗) and each of the sends. The work in [20] views all resulting
transitions as dependent and designates the collection of such transitions as dependence
transition group (DTG). For instance, in Figure 2 the DTG with respect to the receive
R2,1 has the following transitions: t1 = 〈S 0,1,R2,1〉 and t2 = 〈S 1,1,R2,1〉. We define a
function Dtg(s) �Ri,l that returns a set of transitions that belong to the DTG w.r.t. to the
non-deterministic receive Ri,l that are enabled at a state s.

Notice, however, multiple DTGs can co-exist at a state, and they can influence each
other. The example shown in Figure 5 illustrates such a scenario. This figure shows
one trace of the program. Here, the solid un-directed arrows represent the match-sets
along which the execution proceeded. The dotted un-directed arrow represents another
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Fig. 5. Dependence among DTG transitions

possible match-set (not realized in the present execution). The solid directed arrows
capture the IntraMB (“Intra process matches-before ordering) relation4.

Observe that if DTG2 is fired before the transitions in DTG1, then S 2,2 would be
co-enabled with S 1,1, and both these sends can match R0,1. In this case, DTG1 must be
augmented (exactly as per the “C1” condition described in [4]). This is what POEOPT

(optimized POE) described in [20] does.
In our example, DTG1 is augmented—from containing the transition 〈S 1,1,R0,1〉 to

containing two transitions 〈S 1,1,R0,1〉 and 〈S 2,2,R0,1〉. This is the main source of the
exponential explosion alluded to in this paper.

MSPOE seeks to ameliorate this explosion. It takes the following departure from
the workings of POEOPT The whole exercise of MSPOE is to optimistically treat tran-
sitions within a DTG in σ as independent. This observation is true of MPI programs
where application state is independent of the sender that matched the wildcard receive.
Instead, MSPOE takes a lazy approach to augmenting DTGs. As mentioned under “Ob-
servation” on Page 3, as far as orphaning deadlocks are concerned, it is the competition
between a wildcard and a specific receive that must be regarded as the dependency re-
lation that truly matters. We shall see that DTG augmentation done precisely at these
moments leads to an exploration technique (MSPOE) that often generates a single inter-
leaving (implying the absence of deterministic receives). In contrast, POE and POEopt

generate an interleaving blowup. Our results show that orphaning deadlocks are de-
tected by MSPOE in all practical cases, avoiding this explosion.

3 Formal definition of independent transitions

In order to first define independent transitions, we first introduce the notion of commut-
ing sends that are part of the transitions within a single DTG.

Definition 1 (Commuting Sends). : Sends S i,l(k) and S j,m(k) are commuting sends iff
the following conditions hold at a state s:

– Let t1 = 〈S i,l(k),Rk,n(∗)〉 and t2 = 〈S j,m(k),Rk,n(∗)〉 such that t1, t2 ∈ P(s).
– S j,m(k) ∈ t′2 and S i,l(k) ∈ t′1 where t′2 ∈ P(t1(s)) and t′1 ∈ P(t2(s)).5

4 The edge between R2,1 and S 2,2 indicates that their must be a wait operation W bound to R2,1

lying in-between. This W has been suppressed but the effects are appropriately captured in the
IntraMB edge shown.

5 Here, we treat t′1 and t′2 as sets; they really are send-receive pairs which model transitions.
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Observe that in Definition 1, two sends, S i and S j can commute only when they are
enabled and part of transitions t1 and t2 in a state s and firing one send at s should not
leave the other send disabled or unmatched in the subsequent state. The C be the set
of pairs of commuting sends (“commutes” predicate). We now define the independence
relation used by MSPOE as:

Definition 2 (Independent Relation). I ⊆ T × T is an independence relation iff for
each 〈t1, t2〉 ∈ I following conditions hold:

1. Enabledness: t1 and t2 ∈ P(s) and there exists a Rk,n(∗) such that t1, t2 ∈ Dtg(s) �Rk,n .
2. Commutativity: If S i,l(k) ∈ t1 and S j,m(k) ∈ t2 then (S i,l, S j,m) ∈ C.

Thus, with the independent relation, we now can say two transitions t1 and t2 are de-
pendent when the send operations in t1 and t2 do not commute. Consider the example
and its corresponding state graph shown in Figure 6 and Figure 7. The initial state s0
has two enabled transitions, namely: t1 = 〈S 1,1,R0,1〉 and t2 = 〈S 2,1,R0,1〉. Note that
transitions commute since they lead to the same final state. Firing t1 disables t2 in the
next state, however, the transition enabled at t1(s) is t′2 = 〈S 2,1,R0,2〉 and t2 ≡c t′2. Thus,
t1 and t2 are independent. If the send calls in t1 and t2 do not commute (assuming t1 was
fired from s) then:

– The send from t2 is disabled at t1(s).
– The operation available at t1(s) is not a receive t2’s send can match with. If the

operation enabled at t1(s) is a receive, then it must be a deterministic receive which
is sourcing from a process other than the process that issued t2’s send.

We discuss in detail the ability of MSPOE to compute the independence of transitions
in Section 6. We use the classical notion of persistent sets [10].

Definition 3 (Persistent in s). A set T of transitions enabled in a state s is persistent
in s iff, for all non empty sequences of transitions from s in AG

s = s1
t1
−→ s2

t2
−→ s3...

tn−1
−−→ sn

tn
−→ sn+1

and including only transitions ti < T, 1 ≤ i ≤ n, tn is independent in sn with all
transitions in T .

Informally, this means that when a transition sequence is generated from a state s by
choosing only transitions that are independent with transitions in T then the final state

7



Algorithm 1 MSPOE Algorithm
1: Input:
2: Stack of State: St . St has s0; initial state
3: Vector of Set: P . Persistent-set for each state
4: Vector of Set: RP . Reduced Persistent-set for each state

5: s← First(S t) . Get bottom of Stack St
6: S t ← GenerateInterleaving(s)
7: while ∼ Empty(S t) { . continue until St becomes empty
8: s← Last(S t) . Get top of Stack St
9: RPs ← RPs \ {Curr(s)} * . Curr(s) returns the match-set chosen at state s

10: Ps ← Ps \ {Curr(s)}
11: if Empty(RPs) { * . RPs was singleton and was explored in the interleaving
12: S t ← S t − s . Remove state s from St
13: } else
14: S t ← GenerateInterleaving(s)
15: }

16: }

reached cannot have a transition that is dependent with any of the transitions in T . The
interleavings obtained by only executing the entries in the persistent-set at every state
are the representative interleavings and result a quotient state graph denoted as AR.

Let’s revisit the state graph shown in Figure 2. Using Definition 2), we now can
reason about the example. Notice that for the states shown in the dotted box, the DTGs
at those states have only independent transitions. Thus, for the purpose of verification
of safety properties (such as absence of deadlocks), examining only one representative
interleaving would suffice.

4 Macroscopic Partial Order Elusive (MSPOE) Algorithm

Algorithm 1 presents the MSPOE algorithm in detail (statements tagged with ∗ are ad-
ditions to POE which help transform POE into MSPOE). Since we elided the details of
POE in this paper (see [20]), we prefer to present a high level view of MSPOE, placing
details at [17]. In this algorithm, the match-set move (or the transition) selected at a par-
ticular state s in an interleaving is denoted by Curr(s) ∈ Ps where Ps is the persistent-set
at state s. RPs is the reduced persistent-set at state s which is what MSPOE will accom-
plish (it trims down persistent-set sizes according to our macrosopic POR independence
rules presented in § 3). We also maintain a stack S t of states that have been visited but
not completely explored. Algorithm 2 presents ISP scheduler’s functioning to gener-
ate the interleaving of the program according to POE. The operator ≺lp captures the
Matches-Before ordering among operations issued from a process (see [20] for details).
Algorithm 3 depicts the prioritized match-set selection policy of POE which remains
the same for MSPOE.
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Algorithm 2 GenerateInterleaving from state s
1: Input:
2: State: s

3: Stack of State: St

4: Output:
5: Stack of State: St

6: while s is not NULL { . Continue until next state can’t be found
7: m← Choose(Ps) . Choose a match-set to explore from s
8: RPs ← RPs ∪ {m} *
9: if m = 〈S i,l( j),R j,m(i)〉 { * . if m has det recv

10: for all s′ ← s − 1 until First(S t) { * . Update RPs′

11: if ∃Bi,− ∈ Ps′ : Bi,− ≺lp S i,l { *
12: goto Next State *
13: }

14: if ∃m′ ∈ Ps′ : m′ = 〈S i,−( j),R j,−(∗)〉 ∧ m′ < RPs′ { *
15: RPs′ ← RPs′ ∪ {m′} *
16: }

17: }

18: }

19: Next State: s← Explore(s,m) . Get the next state by firing m from s
20: S t ← S t + s . Add s to the Stack
21: }
22: return S t

Algorithm 3 Choose Ps

1: Input:
2: State: s

3: Output:
4: Match-set: m

5: if ∃m ∈ Ps : m contains barrier {
6: return m
7: else if ∃m ∈ Ps : m contains wait {
8: return m
9: else if ∃m ∈ Ps : m contains deterministic recv {

10: return m
11: else if ∃m ∈ Ps : m contains non-deterministic recv {
12: return m
13: }

MSPOE starts with the initial state s0 in the stack. It generates a complete interleav-
ing by calling the function GenerateInterleaving (line 6 in Algorithm 1) It repeats the
following steps from this point forwards until the state stack (S t) becomes empty:

– Select the last state s from the trace and remove the match-set entry explored in the
trace from Ps and RPs. If RPs becomes empty then pop the state off from the state
stack S t.
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P0 P1 P2

S 0,1(2) S 1,1(2) R2,1(∗)
R2,2(∗)

B0,2 B1,1 B2,3

S 1,3(2) R2,4(2)

Fig. 8. MSPOE with redundant exploration

– If the after executing the step the last state has non-empty RPs then generate further
interleaving from s.

Algorithm 2 takes as input a state and generates an interleaving from that state in the
following manner:

– From Ps, choose a match-set m according to POE’s prioritized match-set selection
procedure.

– Add m to RPs.
– If m involves a deterministic receive, then search for each state s′ in the stack S t and

perform the following: (1) If Ps′ contains a match-set m′ involving a send from the
same process whose send is a part of m at Ps then add m′ to RPs′ . (2) However, if Ps′

contains a barrier operation MB ordered with the send that is part of m then move
terminate RPs′ update and move-on to explore the next state in the interleaving.
Consider the example shown in Figure 8. Notice that no matter which interleaving
is explored, S 1,3 can never be enabled and be a potential match for receive calls R2,1
and R2,2 since such a match is restricted by the presence of barriers. We avoid such
unnecessary augmentation of persistent states by adding the barrier check (lines
12-13) to the MSPOE algorithm.

– Repeat all the step until no more states can be explored.

Formal Details: MSPOE is sound, as it explores only feasible interleavings. It is de-
liberately incomplete: our aim is to have a practical alternative to ISP and DAMPI
which guarantee completeness (in terms of non-determinism coverage), but suffer from
an exponential schedule blow-up. §5 shows that MSPOE is a welcome addition to the
practitioners’ toolkit.

5 Experimental Results

All the experiments were run on Intel Core i7 quad-core 2.67 GHz with 8 GB of RAM.
We set a time limit of 2 hours to verify the benchmarks. We abort the verification process
if the it did not complete within the time-limit. The results pertaining to the reductions
obtained are documented in Table 1. Summary of the tabulated results is that MSPOE
explored only one interleaving for almost all benchmarks detecting the same deadlocks
that ISP did. The sign

√
in the MSPOE column next to the number of interleavings

examined illustrates that MSPOE also caught the same deadlock as ISP did.
2D-Diffusion: We tested ISP’s POE and MSPOE algorithm on 2D-Diffusion [7] exam-
ple. The code has a deadlock when evaluated in zero buffering mode. In this mode, the
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Interleavings Time(sec)
Benchmark Buffering # of procs Deadlocks? ISP MSPOE MSPOE

Mat-Multiply
0

4 No 54 1 0.001
8 No 120 1 0.002

∞
4 No 54 1 0.3
8 No 120 1 0.3

2D-Diffusion
0 4 Yes 1 1

√
-

∞
4 No 90 1 0.314
8 No > 10, 500 1 0.442

Pi- Monte-Carlo
0

4 No 36 1 0.002
8 No 5040 1 0.003

∞
4 No 36 1 0.24
8 No 5040 1 0.3

Integrate mw 0
4 No 81 81 -
8 No 2401 2401 -

Madre
0 4 Yes 1 1

√
-

∞
4 No > 8000 1 1.48
8 No > 8000 1 3.09

Parmetis 0 4 No 1 1 128.933

Gaussian Elimination
0

4 No 1 1 0.24
8 No 1 1 0.276

∞
4 No 180 1 0.31
8 No > 20, 000 1 0.324

Table 1. Interleaving results for deadlock detection

P0 P1 P2

R0,1(∗) S 1,1(0) S 2,1(0)
R0,2(∗) S 1,2(0) S 2,2(0)
R0,3(∗)
R0,4(∗)
B0,5 B1,3 B2,3

S 0,7(1) S 1,4(2) S 2,4(0)
· · · · · ·

Fig. 9. Communication in 2D-Diff

send calls act as synchronous operations. The deadlock was caught by ISP and MSPOE
right in the first interleaving. When the same code is run on infinite buffering mode, the
code becomes deadlock free. The code was modified to run with a single time-step. Its
communication pattern is shown in the Figure 9. Note that if sends were treated as syn-
chronous then after barriers each process is blocked on their respective sends causing a
deadlock.
Integrate: Integrate mw [7] is another benchmark that uses heavy non-determinism
to compute an integral of sin function over the interval [0, Pi]. Integrate has a master-
slave pattern where the root process divides the interval in a certain number of tasks.
The root process then delegates to each worker process a single task and then waits for
results from them by posting wildcard receive calls. Workers that finish early with their
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Worker i: while(1) {
R(from 0, any-tag); // Recv task
if(work-tag)
S(master, result-tag);

else break;
}

Master: for(i = 1 to nprocs-1) {
Send(i, work-tag); // send to each worker the task
tasks++;

}
while(tasks <totalTasks){
Recv(*, result-tag); // recv result
S(S.S, work-tag); // assign more task
tasks++;

}
for(i = 1 to nprocs-1) {
Recv(i, result-tag); // recv result
S(i, terminate-tag); // terminate signal to worker i

}

Fig. 10. High-level Code Pattern of “Integrate”

work are provided with more tasks until all tasks are distributed (as detailed in the high
level code in Figure 10).

This benchmark does not have a deadlock. Notice that MSPOE does not demon-
strate any savings over ISP while exploring the schedule space. This is because, the
master process finally posts deterministic receive calls targeting each worker before it
sends termination signals to each worker. This causes the MSPOE to fully expand the
persistent-sets of each prior wildcard receive.

MADRE: MADRE [18], a memory aware data redistribution engine, is a library writ-
ten in MPI which mainly performs load balancing tasks in an efficient manner. MADRE
moves the data blocks across nodes in a distributed system within the bounds of mem-
ory available to each of the application’s process. We tested MADRE with its unitBred
algorithm on various data-sets. unitBred algorithm is of particular interest to us because
it uses MPI ANY SOURCE and MPI ANY TAGS. MADRE has no bugs provided nor-
mal MPI send calls are not treated as blocking calls. We ran ISP’s POE and then MSPOE
algorithm with sbt9 dataset with unitBred algorithm and the results are documented in
the Table 1.

Parmetis: Parmetis [14] is a parallel hypergraph partitioning code-base. Since, Parmetis
only uses deterministic calls, ISP and MSPOE complete the verification process in a
single interleaving. Parmetis was selected as a benchmark despite the absence of non-
determinism because the application issues a lot of MPI calls which served as a basis to
evaluate the scalability of the data-structures used in MSPOE. When run on 4 processes,
Parmetis issues ∼ 55, 000 calls.

6 Discussion

As shown, in all our experiments, MSPOE has managed to detect deadlocks whenever
POE (supported by the ISP tool) has; and managed to return (by generating) a small
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number (typically 1) of interleavings in other cases. In the latter cases, MSPOE com-
putes the full persistent sets, but trims it down based on our macroscopic reduction
criterion. The real value to a designer is the following (take an example similar to 2D
diffusion for discussion): if given 103 processes, POE will simply take forever while
exploring the persistent sets computed from the initial trace. MSPOE will, on the other
hand, examine the initial trace, and perform macroscopic commutation aware persistent
set reductions. This is a search bounding method substantially different from other ob-
vious reduction approaches (e.g., depth-bounding or bounded mixing [22]), and further
this bounding heuristic is tuned toward detecting orphaning deadlocks. Further studies
are underway to further characterize MSPOE.

An important question pertaining to the working of MSPOE is the following: Does
MSPOE precisely compute all the dependent actions in an MPI program? Notice that
MSPOE only augments the persistent-set of prior states (at which a wildcard move took
place) only when a deterministic receive is witnessed later in the trace. It is by no means
a complete criterion to discover all dependent transitions.

Consider, for instance, some patterns that MSPOE cannot handle. In the example
shown in Figure 11, if S 3,1 matched R1,1 then S 1,2 and S 2,1 would engage in a cyclic
wait on each other causing a deadlock. Notice that S 1,2 can’t match unless S 2,1 suc-
cessfully completes since R2,2 is the only match of S 2,1 and S 2,1 is an enabler operation
for R2,2. Notice that MSPOE will fail to discover such a deadlock. However, a perti-
nent question that will underscore the usability of MSPOE is the following: how often
such coding patterns are employed in applications, if at all? In real MPI codes that
we have assessed, we did not witness such a coding style. Typically, a deterministic
communication from a process following a wildcard receive is accomplished by reply
channels. Processes often employ reply channels to perform dynamic load balancing
duties by sending data/task to the sender that matched the prior wildcard receive. Thus,
in our opinion, it is rare (almost to none) to observe that applications issue hard-wired
deterministic receives/sends following a wildcard receive operation. Notice that in Fig-
ure 11, if S 1,2(2) is re-written as S 2,1(status.S ource) (indicating a reply-channel) then
the deadlock in the code disappears.

Figure 12 is another example where MSPOE will fail to detect a deadlock. In Fig-
ure 12, note that the barriers would not discharge if S 3,2 were to match R1,1 thereby
causing the deadlock. Notice that S 3,2 is unordered w.r.t. B3,1. This can happen only
when S 3,2 is issued before B3,1 however the wait associated with S 3,2 is issued after
the barrier. Again, such a coding practice is flawed and we have not witnessed any real
MPI program so far that employs such a coding style. Typically, global fence opera-
tions (such as barriers) are issued only after the local fence operations such as waits are
successfully discharged. If such were to be the programming style then the wait calls
for both R1,3 and S 3,2 should have been issued before the respective process barriers.
In which case, the match-set 〈B1,2, B2,2, B3,1〉 would be issued only after the completion
of 〈S 3,2,R1,3〉. Even in alternate trace when S 3,2 pairs-up with R1,1, notice that S 2,1 will
now find a match in R1,3. Hence, the deadlock will disappear.

In all our benchmarks, none of above mentioned coding styles were employed ex-
cept the deterministic receive calls following a wildcard receive. MSPOE, thus, as a
result of such observations, despite being in-complete works extremely well (in other
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words, appears complete) in practice. Constructing a methodology that is complete
forms the basis of our future work.

7 Conclusions

We have presented a novel algorithm MSPOE that demonstrates significant savings in
the exploration space of programs for the purpose of communication deadlock detec-
tion. In many cases the reductions were from tens of thousands of interleavings to just
one interleaving. We document the MSPOE reduction results observed over several
benchmarks. We further present evidence on the criticality of the match-set selection in
avoiding redundant explorations and for early detection of bugs.
Future work: Conditional communication flow pattern is sill not tackled by MSPOE.
However, MSPOE algorithm can be notified of the causal receive calls whose buffers
when decoded would result in a conditional communication flow. Such information can
be statically mined and provided to the dynamic verification scheduler. To gather the
afore-said information, we would require a MPI specific control flow graph (CFG).
Work in [1] presents pCFG which is a CFG for MPI programs. Our future work would
therefore lie in modifying the pCFG work to handle non-deterministic MPI operations.
Furthermore, we will develop flow-sensitive static analysis methods on top of the im-
proved pCFG to analyze conditional communication patterns.
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