
ZEUS: Analyzing Safety of Smart Contracts

Sukrit Kalra
IBM Research

sukrit.kalra@in.ibm.com

Seep Goel
IBM Research

seep.goel@in.ibm.com

Mohan Dhawan
IBM Research

mohan.dhawan@in.ibm.com

Subodh Sharma
IIT Delhi

svs@iitd.ac.in

Abstract—A smart contract is hard to patch for bugs once it is
deployed, irrespective of the money it holds. A recent bug caused
losses worth around $50 million of cryptocurrency. We present
ZEUS—a framework to verify the correctness and validate the
fairness of smart contracts. We consider correctness as adherence
to safe programming practices, while fairness is adherence to
agreed upon higher-level business logic. ZEUS leverages both
abstract interpretation and symbolic model checking, along with
the power of constrained horn clauses to quickly verify contracts
for safety. We have built a prototype of ZEUS for Ethereum
and Fabric blockchain platforms, and evaluated it with over
22.4K smart contracts. Our evaluation indicates that about 94.6%
of contracts (containing cryptocurrency worth more than $0.5
billion) are vulnerable. ZEUS is sound with zero false negatives
and has a low false positive rate, with an order of magnitude
improvement in analysis time as compared to prior art.

I. INTRODUCTION

Blockchain is the design pattern that underpins the Bitcoin
cryptocurrency [71]. However, its use of consensus to validate
interaction amongst participant nodes is a key enabler for
applications that require mutually distrusting peers to conduct
business without the need for a trusted intermediary. One
such use is to enable a smart contract, which programatically
encodes rules to reflect any kind of multi-party interaction.
With over $1.4 billion invested in blockchain last year [3],
and the increasing trend towards autonomous applications,
smart contracts are fast becoming the preferred mechanism to
implement financial instruments (e.g., currencies, derivatives,
wallets, etc.) and applications such as decentralized gambling.

While the faithful execution of a smart contract is
enforced by the blockchain’s consensus protocol, it remains
the prerogative of the participating entities to (i) verify the
smart contract’s correctness, i.e., the syntactic implementation
follows the best practices, and (ii) validate its fairness, i.e., the
code adheres to the agreed upon higher-level business logic for
interaction. While manual auditing of contracts for correctness
is possible to an extent, it still remains laborious and error
prone. Automatic formal auditing, on the other hand, requires
specialized tools and logic. The problem is exacerbated by the
fact that smart contracts, unlike other distributed systems code,
are immutable and hard to patch in case of bugs, irrespective of

(1) while (Balance > (depositors[index].Amount * 115/100)
&& index<Total Investors) {

(2) if(depositors[index].Amount!=0)) {
(3) payment = depositors[index].Amount * 115/100;
(4) depositors[index].EtherAddress.send(payment);
(5) Balance -= payment;
(6) Total Paid Out += payment;
(7) depositors[index].Amount=0; //remove investor
(8) } break;
(9) }

Fig. 1: An unfair contract (adapted from [32]).

the money they hold. For example, investors in TheDAO [44]
lost cryptocurrency worth around $50 million because of a bug
in the code that allowed an attacker to repeatedly siphon off
money [45]. In this paper, we tackle the problem of formal
verification of smart contracts, since reasoning about their
correctness and fairness is critical before their deployment.

The smart contract in Fig. 1 advertises a 15% profit payout
to any investor. However, the contract has both correctness
and fairness issues. First, the arithmetic operation in line 6
can potentially overflow, which is a correctness bug. Second,
the variable index never increments within the loop, and thus
the payout is made to just one investor. Finally, the break
statement exits the loop after payment to the first investor, who
is the contract owner. Thus, the contract does not payback any
other investor. The last two bugs result in fairness issues.

Most prior art in the area of smart contracts deals with
security and/or privacy concerns in designing them [63], [65],
[68], [74]. There is, however, little work that analyzes smart
contracts for vulnerabilities [51], [55], [69]. Oyente [69] uses
symbolic execution for bug detection at the bytecode level,
but it is neither sound nor complete. Thus, it can result in
several false alarms even in trivial contracts, as we observed
and communicated to Oyente’s developers [27]. Since it is very
hard to recreate the intent from the bytecode alone (due to
loss of contextual information such as types, reuse of same
bytecode for different function calls, etc.) several fairness
and correctness issues, including integer overflow/underflow
amongst others, are thus completely ignored by Oyente.
Further, it conservatively handles loops 1 [30], [33] (with
a bound of one) resulting in under approximation of loop
behavior, and thus fails to detect the two fairness bugs in Fig. 1.

Bhargavan et al. [55] propose a framework to formally
verify smart contracts written in a subset of Solidity using
F?, which leaves out important constructs, such as loops.
Considering the 22, 493 contracts that we analyzed, around
93% contained loops. Thus, their tool will operate on a fraction
of publicly available contracts, which is also corroborated by

1Oyente is under active development and future releases could add more
features and reduce the false alarms.

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23082
www.ndss-symposium.org

their results; they could evaluate only 46 out of 396 contracts.
While use of F? may enable reasoning about most correctness
and fairness properties, the authors suggest that such reasoning
may require manual proofs. Although it is unclear when such
situations may arise. In contrast, we establish that completely
automated verification enables analysis of published contracts
at a much larger scale. Why3 [51] is an experimental tool for
formal verification of Solidity contracts, which is under active
development and supports only a small subset of the entire
syntax [23]. Further, Solidity to Why3 translation has not yet
been tested and thus cannot be trusted [22].

We present the design and implementation of ZEUS—a
practical framework for automatic formal verification of smart
contracts using abstract interpretation and symbolic model
checking. ZEUS takes as input the smart contracts written
in high-level languages and leverages user assistance to help
generate the correctness and/or fairness criteria in a XACML-
styled template [52]. It translates these contracts and the policy
specification into a low-level intermediate representation (IR),
such as LLVM bitcode [67], encoding the execution semantics
to correctly reason about the contract behavior. It then performs
static analysis atop the IR to determine the points at which
the verification predicates (as specified in the policy) must be
asserted. Finally, ZEUS feeds the modified IR to a verification
engine that leverages constrained horn clauses (CHCs) [56],
[62], [70] to quickly ascertain the safety of the smart contract.

ZEUS leverages three key observations to be both sound
and scalable. First, while the blockchain has execution akin to
a concurrent system with task-based semantics, a transaction
comprises of just one call chain starting from a publicly
visible function in the smart contract. This observation helps
significantly reduce the state space exploration for verifying
most properties. Also, data dependence across transactions,
such as read/write hazards among persistent state variables,
requires analyzing O(n2) pairs of transaction interleavings.
Second, smart contracts are both control- and data-driven.
Thus, modeling contracts using abstract interpretation along
with symbolic model checking allows ZEUS to soundly reason
about program behavior. Abstract interpretation computes loop
and function summaries over data domains, which are then
used during the model checking phase that now operates
upon a reduced state space. Lastly, CHCs provide a suitable
mechanism to represent verification conditions, which can be
discharged efficiently by SMT solvers.

ZEUS also benefits greatly from verification atop LLVM
bitcode. Not only does this allow ZEUS to leverage an
industry strength tool-chain for analysis, it enables ZEUS to
plug in any verifier that operates upon the standardized (and
formally verified [75]) LLVM bitcode. Use of LLVM bitcode
also helps ZEUS to support verification of smart contracts
for different blockchain platforms, including Ethereum [13]
and Hyperledger Fabric [25] (or Fabric), written in diverse
high-level languages, such as C#, GO and JAVA. Note that
most high-level languages have mature source code to LLVM
bitcode translators already available. We leverage LLVM’s
rich API set to develop the first Solidity to LLVM bitcode
translator, which faithfully implements execution semantics for
majority of the Solidity syntax for verification. Furthermore,
use of LLVM passes allow ZEUS to separate translation from
implementation of verification checks.

This paper makes the following contributions:

(1) We classify several new and previously known issues but
unstudied in the context of smart contracts and show that they
can potentially lead to loss of money (§ III).
(2) We present a formal abstraction of Solidity’s execution
semantics for verifying smart contracts using a combination
of abstract interpretation and symbolic model checking (§ IV).
(3) We present the design and implementation of ZEUS
(§ IV, and § V), a symbolic model checking framework for
verification of correctness and fairness policies. We build
the first Solidity to LLVM bitcode translator and provide a
program analysis module that automatically inserts verification
conditions given a policy specification. We also provide
abstraction strategies to correctly model Solidity’s execution
semantics to ensure soundness. Further, we build an interactive
predicate extraction tool to make it easy to specify policies for
multi-party interactions in smart contracts.
(4) We present the first large scale source code analysis of
Solidity-based smart contracts. Our evaluation (§ VI) with
22, 493 Solidity smart contracts (of which 1524 were unique)
indicates that about 94.6% of them (with a net worth of over
$0.5 billion) are vulnerable to one or more correctness issues.
However, we do not investigate the practical exploitability of
these bugs. Additionally, we selected several representative
contracts and applied contract-specific fairness criteria.
(5) ZEUS is sound (with zero false negatives) and outperforms
Oyente for contracts in our data set, with low false positive rate
and an order of magnitude improvement in time for analysis.
(6) We show ZEUS’s generic applicability by leveraging it
to verify smart contracts for the Fabric blockchain. We also
demonstrate the ease of applying ZEUS to a verifier of choice
by using SMACK [73] for verification (§ VI-D).

II. BACKGROUND

Blockchain is a distributed, shared ledger that records
transactions between multiple, often mutually distrusting
parties in a verifiable and permanent way. These transactions
are maintained in a continuously growing list of ordered
“blocks”, which are tamper-proof and support non-repudiation.
Apart from the array of transactions, each block also includes
state metadata, including the creation timestamp, the Merkle
hash of the transactions, the hash of the previous block in the
chain, and smart contract code and data. Mining is the process
of distributed, computational review performed on each block,
enabling consensus in a mutually distrusting environment.

PERMISSIONLESS BLOCKCHAIN. Permissionless platforms
allow anyone to join the network and participate in the
process of block verification to create consensus. Examples
of permissionless blockchain platforms include Bitcoin and
Ethereum, where any miner can join the network and start
mining. Permissionless platforms use consensus mechanisms,
such as proof-of-work or proof-of-stake, to build trust and
validate transactions. Since the permissionless blockchain is
decentralized, anonymous and equally accessible to anyone,
the ability to create trust and the ability to scale is low,
resulting in low network throughput.

PERMISSIONED BLOCKCHAIN. A permissioned blockchain
platform, such as Fabric, restricts the participants who can
contribute to the consensus of the system state. In other

2

(1) contract Wallet {
(2) mapping(address => uint) private userBalances;
(3) function withdrawBalance() {
(4) uint amountToWithdraw = userBalances[msg.sender];
(5) if (amountToWithdraw > 0) {
(6) msg.sender.call(userBalances[msg.sender]);
(7) userBalances[msg.sender] = 0;
(8) }
(9) }
(9) ...
(10) }

(1) contract AttackerContract {
(2) function () {
(3) Wallet wallet;
(4) wallet.withdrawBalance();
(5) }
(6) }

Fig. 2: Same-function reentrancy attack.

words, only a restricted set of approved participants have the
right to validate transactions. This restricted model provides
better privacy, scalability and fine grained access control over
users and their data. Hence, most private blockchains for
financial institutions and other enterprises follow this model.
Permissioned blockchains do not typically use proof-based
mining to reach a consensus since all the actors are known;
instead they use consensus algorithms such as RAFT [72],
Paxos [66] or PBFT [58] to achieve higher network throughput.

III. MOTIVATION

We describe the broad classes of correctness and fairness
issues in smart contracts. We also describe potential attacks
due to correctness bugs that can be exploited to gain financial
benefits. None of the attacks discussed exploit any blockchain
or Solidity vulnerabilities or compiler implementation bugs.

A. Incorrect Contracts

An incorrect contract uses constructs or programming
paradigms that are not well understood in the context of the
blockchain platform, resulting in a loss of money.

(I) REENTRANCY. A function is reentrant if it can be
interrupted while in the midst of its execution, and safely
re-invoked even before its previous invocations complete
execution. However, Solidity does not support concurrency,
nor are there any interrupts that can halt a function execution.
In spite of these safeguards, Solidity allows multiple parallel
external invocations, which can invoke the same function using
the call family of constructs, i.e., call, callcode and
delegatecall 2. If an externally invokable function does not
correctly manage the global state, it will be susceptible to a
same function reentrancy attack, such as TheDAO bug [1].
Reentrancy attacks can also happen if a contract’s global state
is not correctly managed across invocations of two different
functions that operate upon the same global state. This bug is
called cross-function race condition [8].

While both call and send can be used for transfer of
Ether 3, send cannot cause reentrancy because send limits
the fallback function to 2300 gas, which neither allows any

2Without loss of generality, we use call to refer to these constructs.
3Ether is Ethereum’s virtual currency. Gas is the execution fee for every

operation made on Ethereum.

(1) if(gameHasEnded && !prizePaidOut) {
(2) winner.send(1000); // send a prize to the winner
(3) prizePaidOut = True;
(4) }

Fig. 3: Unchecked send [47].

(1) for (uint i=0; i < investors.length; i++) {
(2) if (investors[i].invested == min investment) {
(2) payout = investors[i].payout;
(3) if (!(investors[i].address.send(payout)))
(4) throw;
(5) investors[i] = newInvestor;
(6) }
(7) }

Fig. 4: Failed send [39].

storage write nor function calls [6], [15]. Oyente [69], however,
considers the CALL bytecode to trigger its check for reentrancy.
Since, both send and call map to the same CALL bytecode,
Oyente generates several false alarms for reentrancy.

ATTACK. Fig. 2 shows a snippet of this vulnerability. The
attacker invokes the fallback function 4 transferring control
to the Wallet’s withdrawBalance function that uses the
call construct to send Ether to the caller, thereby invoking
the attacker’s fallback function again. This repeated invocation
siphons off Ether from the wallet’s balance. This attack can
be mitigated by swapping lines 6 and 7.

(II) UNCHECKED SEND . Since Solidity allows only 2300 gas
upon a send call, a computation-heavy fallback function at
the receiving contract will cause the invoking send to fail.
Contracts that do not correctly handle such failed invocations
and allow modifications to the global state following the failed
send call, may incorrectly lead to loss of Ether [47].

ATTACK. Consider the example in Fig. 3. The send method
can fail, in which case the winner does not get the money, but
prizePaidOut is set to True. Thus, the condition in line 1 is
always False and the real winner can never claim the prize.

(III) FAILED SEND . Best practices [16] suggest executing a
throw upon a failed send, in order to revert the transaction.
However, this paradigm can also put contracts at risk.

ATTACK. Consider Fig. 4, which describes a DAO that has
a certain number of investors, and is at full capacity. If a
new investor comes along and offers more money than the
current smallest investor, the DAO will pay the dividend to
the smallest, and put the new one in, increasing its capital
stake. However, an adversarial wallet with a fallback function
that takes more than 2300 gas to run, can lock this function
by merely investing enough to become the smallest investor.
When the adversarial wallet is next due to be booted off,
the contract will fail while returning the money and throw,
reverting all changes. This causes the wallet to still be a part
of the investors, thereby causing loss of money to the DAO.

(IV) INTEGER OVERFLOW/UNDERFLOW. Smart contracts
primarily operate upon arithmetic operations, such as iterating
over an array or computing balance amounts to send to a
participant. However, since Solidity is strongly typed, implicit
extending of signed or unsigned integers (e.g., from 8 byte
int to 16 byte int) to store the result is not allowed,

4An anonymous function which is invoked if no matching method is found.

3

(1) uint payout = balance/participants.length;
(2) for (var i = 0; i < participants.length; i++)
(3) participants[i].send(payout);

Fig. 5: Integer overflow [7].

(1) contract UserWallet {
(2) function transfer(address dest, uint amount) {
(3) if (tx.origin != owner) { throw; }
(4) dest.send(amount);
(5) }
(6) }

(1) contract AttackWallet {
(2) function() {
(3) UserWallet w = UserWallet(userWalletAddr);
(4) w.transfer(thiefStorageAddr, msg.sender.balance);
(5) }
(6) }

Fig. 6: tx.origin bug [46].

thereby causing all arithmetic operations to be susceptible to
overflow/underflow. There are over 20 different scenarios that
require careful handling of integer operations [21].

ATTACK. Fig. 5 highlights the severity of the problem.
Specifically, the type of i will be uint8, because this is the
smallest type that is available to hold the value 0. If there
are more than 255 participants, then at i=255, i++ will wrap
around and return to 0. This will cause the payout to be sent
to only the first 255 participants. An attacker can fill up these
spots and gain payouts at the expense of other investors.

(V) TRANSACTION STATE DEPENDENCE. Contract writers
can utilize transaction state variables, such as tx.origin
and tx.gasprice, for managing control flow within a smart
contract. Since tx.gasprice is fixed and is published upfront
to the miner, it cannot be exploited for profit. However, use
of tx.origin for detecting the contract caller can make the
contract vulnerable. For example, if we have a chain of calls,
msg.sender points to the caller of the last function in the
call chain. Solidity’s tx.origin attribute allows a contract to
check the address that originally initiated the call chain, and
not just the last function call [36], [46].

ATTACK. Fig. 6 lists a snippet of code highlighting the bug.
UserWallet is the contract that a user uses to dispense money,
while the attacker deploys the AttackWallet contract. The
attack requires the user to invoke the AttackWallet, which is
possible with some social engineering or phishing techniques.
When the AttackWallet instantiates UserWallet and
invokes transfer, the tx.origin check at line 3 fails, since
the originator of the call chain is the owner. If tx.origin
were replaced by msg.sender, the check would succeed, and
prevent the malicious contract from siphoning off money.

B. Unfair Contracts

We found several examples of syntactically correct
contracts that do not implement the desired logic. Additionally,
we also found examples of logically correct contracts that are
unfair due to the subtleties involved in multi-party interaction.

(I) ABSENCE OF LOGIC. Access to sensitive resources and
APIs must be guarded. For example, the selfdestruct is a
sensitive call that is used to kill a contract and send its balance

(1) contract Wallet {
(2) uint256 balance;

... // initialize balance
(3) function checkAndPay(bytes32 sol,

address dest, uint amt) {
(4) balance -= amt;
(5) if (<solution != correct>) { throw; }
(6) dest.send(amt);
(7) }
(8) }

Fig. 7: Unchecked resources.

(1) while (balance >
persons[payoutCursor Id].deposit/100*115) {

(2) payout = persons[payoutCursor Id].deposit/100*115;
(3) persons[payoutCursor Id].EtherAddress.send(payout);
(4) balance -= payout;
(5) payoutCursor Id ++;
(6) }

Fig. 8: Variable mixup [48].

to a designated address. Thus, this call should be preceded
by a check that only the owner of the contract is allowed to
kill it. However, we observed that several contracts that used
selfdestruct did not have this check, potentially allowing
an adversary to receive money and kill the contract.

Consider another example as shown in Fig. 7. The contract
Wallet defines a function checkAndPay that takes in a
solution to a puzzle, a destination address, and an amount
to send to that address, if the solution is correct. It also
decrements the balance from the owner’s account. If the
balance in the wallet is less than the amount to be sent, then
the owner gets the solution to his puzzle and not pay anything
because send will fail. Thus, from the perspective of the
solution provider, this contract is unfair. The problem can be
easily remedied if there were appropriate checks before every
write to a shared resource. For example, the contract writer can
check if the the balance is less than the amount before line 4
and throw, thereby reverting the entire transaction and not
accessing the solution. In general, contract writers can adhere
to the following 3 step rule: check prerequisites, update state
variables, and perform actions.

(II) INCORRECT LOGIC. There are many syntactically legal
ways to achieve semantically unfair behavior. While there are
several real-world examples for this class, in the interest of
space we briefly describe four representative bugs.

• Consider the example in Fig. 8. Notice that two similar
variables, payoutCursor Id and payoutCursor Id are
initialized to 0. The first one gets incremented, but the payouts
go to the second one (see line 2), which stays at zero. Hence,
the contract is not actually fair: the deposits of all investors
go to the 0th participant, possibly the person who created the
scheme, and everyone else gets nothing.
• HackersGold, another popular contract, recently had a bug
discovered [24] where the transferFrom function did not
correctly increment the balance to be transferred to the
recipient. The bug involved a typographical error where += was
coded as =+, resulting in no increment in balance to be sent to
the receiver. We found 15 unique contracts in our data set that
include the same transferFrom functionality and hold over
$35, 000 worth of Ether with over 6500 transactions executed
between them. We continue to see several transactions even
months after the issue was advertised.

4

(1) if (balances[msg.sender] < value &&
value < 1208925819614629174706176) {

(2) balances[msg.sender] -= value;
(3) balances[to] = value;
(4) }

(1) if (balances[msg.sender] >= value &&
value < 1208925819614629174706176) {

(2) balances[msg.sender] -= value;
(3) balances[to] = value;
(4) }

Fig. 9: Logic error in contracts [4] and [29].

(1) function placeBid(uint auctionId)
returns (bool success) {

(2) Auction a = auctions[auctionId];
(3) if (a.currentBid >= msg.value) throw;
(4) uint bidIdx = a.bids.length++;
(5) Bid b = a.bids[bidIdx];
(6) b.bidder = msg.sender;
(7) b.amount = msg.value;
(8) ...
(9) BidPlaced(auctionId, b.bidder, b.amount);
(10) return true;
(11) }

Fig. 10: An unfair auction house contract (adapted from [2]).

• A recent attack [35] on the popular MultiSig wallet
contract allowed an attacker to change the owner of the wallet
by invoking the initWallet function in the context of the
previous owner, which did not check for double initialization
and was inadvertently made a public function. The attackers
were able to get away with over $30mn worth of Ether.
• Consider Fig. 9 that shows the exact same snippet in two
contracts [4] and [29]. However, the check to determine that
balance must be greater than value to allow the transfer is
incorrect in the first one and correct in the other one.

(IV) LOGICALLY CORRECT BUT UNFAIR. Consider the
placeBid function from an auction house contract [2]
in Fig. 10. By law, an auction in the U.S can be “with
reserve” or “without reserve”. If a seller is allowed to bid, the
auction is “with reserve”, which can affect the participants’
willingness (since the seller can artificially bid up the price).
Further, the seller may withdraw the property from the auction
anytime prior to it being sold. However, most importantly,
at such “with reserve” auctions, the seller may bid only if
that right is disclosed to the participants. This contract does
not disclose whether it is “with reserve” or not, and the
knowledge is gleaned only by analyzing the source code. The
placeBid function places no restriction on bidders willing to
bid, indicating that sellers can also participate. A careful code
analysis reveals that the seller can indeed withdraw the item
before being sold. However, unsuspecting bidders, having no
expertise in analyzing code, may lose money due to artificially
increased bids or forfeit their participation fee. This contract is
thus unfair to participants, and indicates the subtleties involved
in multi-party interactions, where fairness is subjective.

C. Miner’s Influence

A miner in a permissionless blockchain can order the
transactions from his pool. A malicious miner can re-order
transactions (while being adversarial to some participants) and
obtain profit by prioritizing his own transactions.

P ::= C∗

C ::= contract @Id{ global v : T ; function@Id(l : T) {S })∗}

S ::= (l : T@Id)∗ | l := e | S ; S
| if e then S else S
| goto l
| havoc l : T | assert e | assume e
| x := post function@Id (l : T)
| return e | throw | selfdestruct

Fig. 11: An abstract language modeling Solidity.

(I) BLOCK STATE DEPENDENCE. Solidity defines several
block state variables, such as timestamp, coinbase,
number, difficulty and gaslimit, which can be used to
generate randomness [49]. All these variables are determined
from the block header, and are thus, in principle, vulnerable
to tampering by the block miner, who can insert suitable
values to favor payouts intended for him, albeit with varying
degrees of success [14]. While prior work [69] considers
only timestamp, other block state variables can also lead to
different Ether flows along different program paths.

(II) TRANSACTION ORDER DEPENDENCE. Concurrent
systems have for long grappled with the problem of data
races due to transaction ordering. While Solidity does not
support concurrency, a miner can influence the outcome of
a transaction due to its own reordering criteria. Since this
dependence on transaction ordering is a universal blockchain
feature, we consider it a limitation rather than a bug.

IV. ZEUS

ZEUS’s tool chain for smart contract verification consists
of (a) policy builder, (b) source code translator, and (c) verifier.
Specifically, ZEUS takes as input a smart contract and a policy
(written in a specification language) against which the smart
contract must be verified. It performs static analysis atop the
smart contract code and inserts the policy predicates as assert
statements at correct program points. ZEUS then leverages its
source code translator to faithfully convert the smart contract
embedded with policy assertions to LLVM bitcode. Finally,
ZEUS invokes its verifier to determine assertion violations,
which are indicative of policy violations.

We now present a formal overview of ZEUS’s workflow and
present proofs of its soundness. While we focus on Solidity-
based smart contracts, ZEUS’s design is generic and applicable
to contracts written in any source language. Note that our
formalism is inspired from [69] to maintain readability.

A. Formalizing Solidity Semantics

We define an abstract language that captures relevant
constructs of Solidity programs (see Fig. 11). A program
consists of a sequence of contract declarations. Each contract
is abstractly viewed as a sequence of one or more method
definitions in addition to declaration and initialization of
persistent storage private to a contract, denoted by the keyword
global. A contract is uniquely identified by Id, where Id
belongs to a set of identifiers. This invocation of the contract’s
publicly visible methods is viewed as a transaction.

For simplicity, we have methods with a single input
variable of type T (where Dom(T) ⊆ N) and a single variable

5

that is global to the contract’s functions 5. Since T is generic,
it can represent collections and structs as well. Method
invocations in Solidity can be of three types: internal, external
and call. Internal and external invocations are modeled via
the goto instruction or are inlined, while the call invocation
is modeled separately as post. The body of a contract
method is inductively defined by S . In contrast, the post
statement can be invoked with arguments across contracts.
Hence, argument l (of type T) is part of post.

The semantics of our language abstract concrete values and
operations. Thus, enumeration of T or particular expression
language e remains unspecified for us. Note that the details
of the expression language are not important; one can
assume linear arithmetic expressions defined for any traditional
imperative language. The statement havoc assigns a non-
deterministic value to the variable l. An assert statement
introduces a check of truth value of predicates in the symbolic
encoding. An assume statement blocks until the supplied
expression becomes true and specifies a data state at a given
control location in a contract.

While a formal argument about the semantic equivalence
of Solidity and our abstract language is desirable and can
be established by defining abstraction functions from Solidity
constructs to constructs in our abstract language, we omit
it in the interest of space. Instead, we intuitively reason
about the various Solidity constructs and their equivalent
modeling in our abstract language. Constructs such as class,
library and interfaces can be desugared as a collection
of global variables and functions in our abstract language.
Even compilers model them similarly when translating C/C++
code to LLVM bitcode. struct, mapping, arrays and bytes
are mapped to globals. Built-in methods such as sha256
that affect the state of the same contract are modeled as
external functions. Functions that operate upon addresses such
as send, transfer, and call family of instructions are
modeled via the post statement. Special constructs like
selfdestruct are natively modeled in our abstract language.
All control structures including function modifiers in Solidity
can be desugared into if-then-else and goto. Solidity-style
exception handling using assert, require and throw also
maps directly to our abstract language using if-then and
throw. Note that assert and assume in our language are
used for verification, and assert has semantics different from
those in Solidity. Other compiler directives such as constant
and storage are also desugared, and are thus not modeled
explicitly in our abstract language.

LANGUAGE SEMANTICS. The blockchain state is defined by
the tuple: 〈〈T , σ〉, BC〉 where 〈T , σ〉 is the block B being
currently mined. BC is the list of committed blocks, and T
denotes the multiset of completed transactions that are not yet
committed. Let Vals ⊆ N be the set of values that expressions
can take after evaluations. σ is the global state denoted by
the function σ : Id → g that maps contract identifiers to a
valuation of the global variables, where g ∈ Vals. Note that
σ is the state of the system reached after executing T in an
order as specified by the miner. Finally, each miner will add
B to their respective copies of blockchain once it is validated.

A transaction is defined as a stack of frames represented

5We lose no generality with single local and global variables

by γ. Each frame is further defined as: f := 〈`, id,M, pc, ν〉,
where ` ∈ Vals is the valuation of the method-local variables
l, M is the code of the contract with the identifier id, pc is
the program counter, and ν := 〈i, o〉 is an auxiliary memory
for storing input and output. The top frame of γ is the frame
under active execution and is relevant to the currently executing
transaction; it is not part of the persistent blockchain state. An
empty frame is denoted by ε. A configuration c, defined as
c := 〈γ, σ〉, captures the state of transaction execution and
denotes the small-step operational semantics.

Table 1 lists relevant semantic rules that govern changes
in the configuration. Rules for remaining sequential statements
are standard. The symbol → is overloaded to illustrate a
transition relation for globals and blockchain states. The
symbol ← indicates an assignment to an lvar.

B. Formalizing the Policy Language

Assume PVars to be the set of program variables, Func
to be a set of function names in a contract (which is uniquely
identified by Id as defined in § IV-A) and Expr to be the
set of conditional expressions specified as quantifier-free first
order logic (FOL) formulae. Policy specification must use these
syntactic symbols to avoid any ambiguity during verification.

ZEUS leverages user assistance to build a XACML-
styled five tuple policy specification [52] consisting of
〈S ub,Ob j,Op,Cond,Res〉. Subject S ub ∈ PVars is the set
of source variables (one or more) that need to be tracked.
Object Ob j ∈ PVars is the set of variables representing
entities with which the subject interacts. Operation Op is
the set of side-affecting invocations that capture the effects
of interaction between the subject and the object. Op also
specifies a trigger attribute, either ‘pre’ or ‘post’, indicating
whether the predicates should hold before or after the specified
operation. In other words, Op := 〈 f , trig〉 where f ∈ Func
and trig ∈ {pre, post}. Condition Cond ∈ Expr is the set of
predicates that govern this interaction leading to the operation.
Finally, Res ∈ {T, F} indicates whether the interaction between
the subject and operation as governed by the predicates is
permitted or constitutes a violation.

TRANSLATION OF POLICY TO ASSERTIONS. Our abstract
language includes assertions for defining state reachability
properties on the smart contract. ZEUS leverages the policy
tuple to extract: (a) predicate (i.e., Cond) to be asserted, and (b)
the correct control location for inserting the assert statements
in the program source.

Notice that Cond is an expression in our abstract language.
Thus, taking this expression predicate and wrapping it under
assert(exp)creates a statement in our abstract language.
Res indicates whether the condition will appear in its normal
or negated form in the assert statement. Op indicates the
function invocations where the predicates (as indicated by the
condition) must satisfy trig. This trig attribute along with
S ub and Ob j precisely discriminates which invocations of the
operation should be prefixed or suffixed with the condition. In
other words, we precisely know the control locations in the
abstract program P where Cond must be asserted.

More formally, f : S ub × Ob j × Op → Loc where Loc
is the set of program locations. Operationally, this function is

6

Rule Semantics Description

Post-Invoke

LookupS tmt(M, pc) = (x := post f nc@Id′(i′)),
f = 〈`, Id,M, pc, 〈i, ∗〉〉, c = 〈 f .A, σ〉

f ′ ← 〈`′, Id′,M′, 0, 〈i′, ∗〉〉

c c[γ 7→ f ′. f .A]

This rule creates a new frame f ′ and adds it to the top of the stack of frames f .A. Calling a function does not
lead to any change in the global state σ as illustrated by the sequent. Note that frames can only be created
when a client invokes a contract’s publicly visible methods or via the post instruction.

Post-Return-Succ

LookupS tmt(M′, pc′) = return e,
f ′ = 〈`′, Id′,M′, pc′, 〈i′, 1〉, c = 〈 f ′. f .A, σ〉

f ← 〈`, Id,M, pc, 〈i, ∗〉〉

c c[γ 7→ f [pc 7→ pc + 1, ` 7→ `new].A]

The rule updates the output of f ′ to 1 and pops it from the stack of frames, updates the value of local variable
(from ` to `new) in the calling frame f , and finally updates pc of the procedure corresponding to f .

Post-Return-Fail

LookupS tmt(M′, pc′) = throw,
f ′ ← 〈`′, Id′,M′, pc′, 〈i′, 0〉〉, c = 〈 f ′. f .A, σ〉

f ← 〈`, Id,M, pc, 〈i, ∗〉〉

c c[f [pc 7→ pc + 1, ` 7→ `new].A]

The procedure for f ′ throws an exception. This results in the output of f ′ being updated to 0. In the calling
frame f , the pc is advanced by 1 and local variable valuation is updated with the output of f ′. The frame f ′

itself is removed from the stack frame.

Self-destruct

LookupS tmt(M′, pc′) = selfdestruct
f ′ ← 〈`′, Id′,M′, pc′, 〈i′, ∗〉〉, c = 〈 f ′. f .A, σ〉

del Id′, c c[f [pc 7→ pc + 1].A]

When a method in contract with identifier Id′ issues a selfdestruct, it causes the associated frame f ′ to
immediately pop off. The pc of the calling frame is advanced and the contract Id′ is registered for deletion.

Assert

LookupS tmt(M, pc) = assert e
f ← 〈`, Id,M, pc, 〈i, ∗〉〉, c = 〈 f .A, σ〉

c c[f [pc 7→ pc + 1].A]

Assert instruction only leads in advancement of the pc. The real use for assert is in generating verification
conditions for the method.

Tx-Success

〈γ, σ〉 ∗ 〈ε, σ′〉,
T ← γ

B→ B[T 7→ T ∪ {T }, σ 7→ σ′]

If an execution of a transaction T proceeds to completion without exceptions, then the transaction is added to
the multiset of completed transactions.

Tx-Failure

LookupS tmt(M, pc) = throw,
f ← 〈`, Id,M, pc, 〈i,⊥〉〉, c = 〈 f .ε, σ〉

c c[f .ε 7→ ε]

Since an exception of a callee frame does not propagate upwards to the caller, a transaction can fail only when
the starting method frame throws an exception. In such an event, the list of completed transactions remains
the same while the stack frame is made empty.

Add-block
〈〈T , σ〉, BC〉, 〈ε, σ〉

〈〈T , σ〉, BC〉 → 〈〈ε, σ〉, BC.T〉

The list of completed transactions is committed to the blockchain by this rule. We have explicitly ignored the
broadcast and verification of proof-of-work as they have no affect on the global or blockchain state.

Table 1: Semantic rules for abstract assertion language. Note that M can be obtained by calling LookupCode(Id, σ) and the statement
about to be executed can be obtained by the function LookupStmt(M, pc) where pc is pointing to the next statement to be executed.

realized by performing a taint-analysis to determine the set
of locations where S ub and Ob j are conjunctively used. This
set is further refined by choosing only those control locations
where the specified operation is invoked. The final locations
are the ones where Cond must be asserted based on trig.

C. Soundness

The proof for soundness of the translation from a
Solidity contract to our abstract language with assertions
(corresponding to policy predicates), and finally into LLVM
bitcode entails the following steps. First, we discuss that
translation of Solidity code into our abstract language does not
affect semantic behavior. Second, we argue that a conservative
placement of asserts does not affect the soundness of the
approach. Third, we reduce the problem of policy confirmation
to a state reachability problem. Fourth, we provide a definition
of state reachability in the context of a Solidity program. Fifth,
we demonstrate that by ensuring state reachability on an over-
approximate version of the program, we do not miss on any
program behaviors. Lastly, we argue that since our translation
from this over-approximate Solidity program to LLVM bitcode
is a faithful expression-to-expression translation, our overall
soundness modulo the decision procedure is preserved.

(I) TRANSFORMATION FROM SOLIDITY TO ABSTRACT
LANGUAGE. Since Solidity maps semantically to our abstract
language (per § IV-A), this translation preserves the semantic
behavior of the original program. While a formal argument
about the semantic equivalence of Solidity and our abstract
language is desirable, we omit it in the interest of space.

(II) EFFECT OF TAINT ANALYSIS ON SOUNDNESS. Note that
taint-analysis, which is required to determine the locations
at which to assert the predicates, is conservative. Thus, it
may potentially insert asserts at multiple locations. While such
extraneous asserts may introduce false positives, they do not
affect false negatives. Hence, the approach is sound.

(III) SEMANTIC INTERPRETATION OF POLICY
CONFIRMATION. Since the policies are restricted to
quantifier-free FOL, policy confirmation can be reduced to
a state reachability problem, i.e., does there exist a state
reachable from the start state at which the policy does not
hold? Formally, a policy φ holds on a program P when
N |= φ, where N is a formal representation of program P as a
state-transitioning finite automaton. Note that assert(exp)
in the abstract language has different semantics than the assert
statements in high-level languages such as C (per Table 1).

(IV) ASSERTION SAFETY IN A PROGRAM IMPLIES POLICY
CONFIRMATION. Consider a program P̂ (corresponding to a
Solidity program P) in our abstract language but without any
asserts or havocs. Let BP̂ be the set of behaviors of P̂
described as BP̂ = {s | ∀ s0 ∈ I, s ∈ Reach(s, s0)} where I is the
set of initial states and the relation Reach(s, s′) is true iff s→∗
s′. Consider the translation P̂ → P̂′, where P̂′ has asserts
inserted according to the rules governed by the compilation of
policies into asserts as described above.

Lemma 1: Assertion safety in P̂′ ⇔ Assertion safety in P̂.

Proof: The semantic rule for the assert statement
indicates no change in the data state of the program except

7

the change of the program counter. asserts are relevant
only as tags for the underlying verifier to generate verification
conditions. Thus, it follows that BP̂ = BP̂′ , which implies that
assertion safety in P̂′ is equivalent to assertion safety in P̂.

(V) SOUNDNESS VIA OVER-APPROXIMATION. Consider
now a translation of program P̂′ to P̂′′, where definition of
global variables is replaced by havoc statements.

Lemma 2: Assertion safety in P̂′′ ⇒ Assertion safety in P̂′.

Proof: It is clear that any havoc(x) statement in the
program expands the domain of legitimate values that the
variable x can take to the type-defined domain of that variable.
Thus, BP̂′ ⊆ BP̂′′ . This relation implies our lemma statement.

Theorem 1: Assertion safety of P′′ ⇒ Assertion safety of P.

Proof: The proof follows from Lemma 1 and 2.

(VI) SOUNDNESS OF METHODOLOGY. Let P′′′ be a faithful
translation of the over-approximate program P′′ into LLVM
bitcode. Table 2 lists the details of our semantically equivalent
expression-to-expression translation strategy. In other words,
P̂′′ � P̂′′′. Like prior art [55], a formal proof for soundness of
the translation strategy is outside the scope of this work.

Thus, the overall soundness of our methodology logically
follows from Theorem 1 and P̂′′ � P̂′′′, and the established
soundness of ZEUS’ underlying decision procedure [62].

D. Symbolic Model Checking via CHCs

ZEUS uses prior art [62] to emit verification conditions as
CHCs for the translated program P̂′′′. The strength of the CHC
representation enables it to interface with a variety of SMT-
based solvers and off-the-shelf model checkers [57], [64].

E. End-to-end example

Fig. 12 presents an end-to-end example complete with
all program transformations. The Solidity snippet sends
msg.value to the address msg.sender and updates its local
balance by subtracting the same from bal[msg.sender]. The
example policy checks that the send invocation must satisfy
the condition that the balance for the user must be greater
than the value to be sent. ZEUS extracts the predicate from
the policy condition and places it as an assert in the Solidity
code. Subsequently, it transforms it into the abstract language.
Lastly, ZEUS translates this program into LLVM bitcode.

V. IMPLEMENTATION

We implement a prototype of ZEUS as described in § IV.
We implement the policy builder and the Solidity to LLVM
bitcode translator in C++ using the AST of the smart contract
derived from the Solidity compiler solc [42]. The policy
builder and the translator (including the LLVM passes for bug
detection) required around 500 and 3000 LOC respectively.

For ease of implementation, we leverage Seahorn [62]
as our symbolic model checking backend for verification of
policies. Instead of building the verifier from scratch, we
determined that Seahorn provides us with an off-the-shelf
implementation of generating verification conditions using

Solidity code
function transfer() {

msg.sender.send(msg.value);
balance = balance - msg.value;

}

Policy
<Subject> msg.sender </Subject>
<Object> msg.value </Object>
<Operation trigger="pre"> send </Operation>
<Condition> msg.value <= balance </Condition>
<Result> True </Result>

Abstract Program
havoc balance
B@δ() {

assert(value <= balance)
post B

′
@δ()

balance = balance - value
}

LLVM bitcode
define void @transfer() {
entry:

% value = getelementptr %msgRecord* @msg, i32 0, i32 4
%0 = load i256* % value
%1 = load i256* @balance
%2 = icmp ule i256 %0, %1
br i1 %2, label %"75", label %"74"

"74": ; preds = %"64"
call void @ VERIFIER error()
br label %"75"

"75": ; preds = %"74", %"64"
% sender = getelementptr %msgRecord* @msg, i32 0, i32 2
%3 = load i160* % sender
%4 = call i1 @send(i160 %3, i256 %0)
%5 = sub i256 %1, %0
store i256 %5, i256* @balance
ret void

}

Fig. 12: An end-to-end example.

<Subject> msg.sender </Subject>
<Object> a.seller </Object>
<Operation trigger="pre"> placeBid </Operation>
<Condition> a.seller != msg.sender </Condition>
<Result> True </Result>

Fig. 13: Fairness policy for example in Fig. 10.

CHCs over LLVM bitcode. Furthermore, use of existing tools
that have been tested for bugs and fine tuned for performance,
both of which are critical for verifiers, helps reduce ZEUS’s
false alarms and improve verification times. However, as will
be shown later in § VI-D, ZEUS is not tied to Seahorn; it
can be used with any other verifier that operates upon LLVM
bitcode, such as SMACK [73] or DIVINE [53].

A. Policy Builder

ZEUS extracts the identifier information (for subjects and
objects) from the corresponding AST node in the solc parser
to build the policy. The operation is extracted from the function
call node in the AST, while the predicates are extracted from
the conditionals in the node representing binary operations.

Algorithm 1 briefly lists the steps to build the policy
specification. Specifically, ZEUS runs a taint analysis pass
over the contract code with sources (S) as contract- and
runtime-defined global variables in Solidity [49]. The sinks
(F) are invocations to external APIs calls, such as send or
publicly invocable functions. ZEUS also captures control flow

8

POLICY BUILDER(C)
Input: C: Smart contract source code.
Output: P: Policy specification

SS := TAINT ANALYSIS(C); sub := Get Subjects From User(SS)

α := SS[sub]; obj := Get Objects From User(α)

β := α[obj]; ops := Get Operations From User(β, obj)

γ := β[ops]; con := Get Predicates From User(γ, ops)

trigger := Get Trigger From User(); result := Get Result From User()

P := Create Policy(sub, obj, ops, con, trigger, result)
return P

TAINT ANALYSIS(C)
Input: C: Smart contract source code.
Output: Ψ: Set of state space tuples.
Initialize: S: {Global variables}, F: {Publicly visible functions}, Ψ := {}
foreach ((ρ ∈ S) ∧ (φ ∈ F)) do

O:= {}; P:= {};
τ := GET ALL TAINTED STATEMENTS(ρ, φ)
foreach (pc ∈ τ) do

obj := Get Objects(pc)
O := O ∪ obj
if (Is Conditional(pc)) then p := Get Predicate(pc); P := P∪ p ;

end
Ψ := Ψ ∪ (ρ, O, φ, P)

end
return Ψ

Algorithm 1: Steps to build the policy specification.

conditionals, or path predicates, for all flows originating at
the sources and terminating at the sinks. The output of the
taint analysis pass is a set of tuples consisting of the source,
the objects, the sink and its corresponding path predicates.
ZEUS then lists the set of all available taint sources, i.e.,
the globals and the environment variables, from which a user
selects the subject to be tracked. It then filters the results
from the taint pass that reduces the search space to tuples
containing at least one of the subjects selected by the user.
ZEUS then prompts the user to select the object(s), following
which it further prunes the tuple list. It then displays the list
of potential invocations that involve at least one or more of
the subjects or objects. Upon further selection, ZEUS lists
the available predicates encountered along the source to the
sink. The user can compose these predicates (or specify his
own) using boolean operators to form the condition in the
policy, and indicate whether they are checked as a pre- or post-
condition. Finally, the user indicates in the result tag whether
the specification determines a violation or accepted behavior.

Fig. 13 lists the fairness criteria for the example shown
in Fig. 10. Correctness polices use a similar template with the
operation specifying the bug class to be detected.

B. Solidity to LLVM Bitcode Translator

ZEUS takes in a smart contract and passes it through
the translator to generate its LLVM bitcode along with
the debug symbol information. Subsequently, for ease of
implementation, it reads the policy specification and rewrites
the bitcode (instead of the Solidity source code) to inject assert
conditions for the predicates as per the trigger attribute in the
specification. Most Solidity statements and expressions have
the same semantics as their C/C++ counterparts. We use the
rich LLVM APIs to generate semantically correct bitcode while
traversing the AST during code compilation (per Table 2). We
handle expression translation using the standard LLVM APIs.

ENSURING SOUNDNESS. In Solidity, execution of a public
function constitutes a transaction, which can be reordered at

the miner. To be sound, ZEUS must correctly reason about all
possible execution orders and control paths in the program.

(1) Execution order: Since there can be arbitrarily many
parallel invocations of a contract’s public functions with no
global invocation order enforced, modeling these infinitely
many execution orders is not possible. We observe that for six
of the seven classes (except transaction-order dependence), bug
detection is intra-transaction. In other words, the verifier needs
to reason about bugs within one call chain. The ordering of
transactions does not impact bug detection within a transaction.
Detection of transaction-order dependence involves detecting
writes and subsequent reads to sensitive global variables
across a pair of transactions. Reasoning about pairs of
functions suffices, because a minimal instance of transaction-
order dependence must manifest across at least two function
invocations. Ordering of remaining functions is immaterial for
detecting the bug. Thus, for a contract with n publicly available
functions, ZEUS must reason about O(n2) possible orderings.
ZEUS generates a set of main functions, which act as the entry
point for verification. Specifically, a main function is a harness
that havocs all the global state before invoking a publicly
defined function. For transaction-order dependence, ZEUS
havocs the global state and invokes pair-wise permutations
of all public functions from within a main function. Further,
ZEUS havocs the entire global state upon invocation of any
member of the call family.
(2) Path traversal: In Solidity, global variables hold state
across executions. Modeling and reasoning all such states
in one static analysis execution is impractical. Thus, ZEUS
abstracts the values of all globals in the contract, including
the block and transaction state variables, to the entire data
domain corresponding to the data type. For example, a global
of type uint256 is modeled as having an integer domain, and
can take values anywhere between 0 and INT MAX. For any
concretely defined starting values, ZEUS automatically havocs
them to explore the entire data domain. Keeping the initial
value constant does not reason about all possible executions
since the value may be incremented in subsequent contract
executions and may lead to potential exploitability in the
future. Thus, a single static execution suffices to analyze all
possible control paths.

MODELING SOLIDITY SYNTAX. ZEUS supports complex
Solidity syntax, including inheritance, external functions,
tuple expressions, modifiers, operations over nested struct
definitions, iteration over maps and arrays, and memory
allocation/de-allocation. We discuss a few of them below:

(1) Inheritance: Solidity allows multiple inheritance amongst
the contracts. ZEUS follows the same logic used by Solidity to
implement inheritance, i.e., the base contract on the extreme
right in the declaration overrides all functions previously
declared by other base contracts. Specifically, ZEUS generates
the LLVM bitcode per contract, and then follows the said order
to patch the overriding functions visible in the derived class.
(2) External functions: Solidity allows one contract to call
into another contract. Furthermore, Solidity mandates that
all external functions only take in primitives as input and
the returns are also of primitive types [37]. While ZEUS
cannot resolve such functions at compile time, it over
approximates their behavior for soundness and assumes that
these external functions return a non-deterministic value. This

9

AST Node Abstract LLVM API Comments
ContractDefinition contract@Id{...} Module Creates a new module, sets the data layout, generates the definition of global

variables and functions, and writes a main function which serves as the driver.
EventDefinition function@Id(l:T){S} FunctionType,

Function
Creates a new function with the return type void, the arguments type as specified
in the event, and inserts it in the given module.

FunctionDefinition function@Id(l:T){S} FunctionType,
Function

Creates a new function with the given return type, arguments and the body.

Block {S} BasicBlock Creates a BasicBlock inside the LLVM IR, sets the insertion point to this block,
and iterates over the statements to generate the IR for each one.

VariableDeclarationStatement (l:T)∗ CreateStore,
CreateExtOrTrunc

Iterates over all the variables declared in this statement, allocates the variable
using the VariableDeclaration node, and stores the initial value (or a default
value) to the allocated space. (after sign / zero extension / truncation if needed).

VariableDeclaration (l:T) GlobalVariable,
CreateAlloca

For a global variable, uses the GlobalVariable API to define a global variable,
otherwise, allocates space using the alloca instruction.

Literal ` ConstantInt Allocates a constant value for the various types of integers of varying widths.
Return return e ReturnInst,

CreateExtOrTrunc,
CreateGEP

Uses other AST nodes to generate the expression to return, dereferences it,
extends / truncates the value, and returns the value using the return instruction.

Assignment l := e CreateExtractValue,
CreateExtOrTrunc,
CreateLoad,
CreateStore,
CreateBinOp

Generates the right hand side of the expression. A tuple is unpacked. For
compound assignments, the corresponding binop instruction is created, and the
result is sign/zeroextended/truncated and stored in the left hand side.

ExpressionStatement e Calls the ASTNode for the Expression to generate the LLVM IR.
Identifier Id ValueSymbolTable,

GlobalVariable,
getFunction

Checks for the identifier inside the local variables, global variables or the
functions written in the contract, and returns the appropriate LLVM object.

IfStatement if e then S else S BasicBlock,
CreateBr,
CreateCondBr

Generates the condition variable inside the current block, creates a conditional
branch, and branches to either the true or the false branch. In the absence of the
false branch, uses the branch instruction to fall through.

FunctionCall goto or post CreateExtOrTrunc,
CreateCall,
Function

Generates the arguments for the function call, fixes their type according to the
solidity semantics, and creates a call to the required function.

WhileStatement / ForStatement if e then goto l
else S

BasicBlock,
CreateCondBr

Generates the conditional variable, the body of the loop, and a branch instruction.

StructDefintion T StructType Generates a structure of the same type as in the solidity contract.
Throw throw Function,

CreateCall
Calls the system’s exit function.

Break / Continue if e then goto l CreateBr Keeps a stack of the break/continue tags and branches to the appropriate label.

Table 2: Expression to expression translation from Solidity code to LLVM bitcode.

non-determinism soundly models the execution semantics of
these external functions, i.e., the return can take any value.
(3) Arrays: ZEUS does not implement dynamic arrays in
LLVM bitcode but uses a static array with large length. This
minor tweak preserves the semantic meaning of the contracts
and makes them amenable for verification. All strings and byte
accesses are also modeled as arrays with integer domain.
(4) Rational Ether: Solidity does not implement floating
point arithmetic. It instead uses rational numbers to implement
fractional payouts. ZEUS converts such rational payments into
lower monetary units to allow integer arithmetic in LLVM
bitcode. For example, ZEUS converts 1/4 ether to 250 finney.

HANDLING LLVM OPTIMIZATIONS. LLVM’s optimizer
can run aggressive passes eliminating any non-side affecting
variables and function calls. However, this can adversely
impact the verification result. For example, if return values
from invocations such as send are not used, both the
send call and the return value are optimized out. This
optimization causes problems in detecting scenarios described
earlier in § III-A and § III-C. Further, the verifiers may invoke
their own optimization passes that may mess with the LLVM
bitcode translation from Solidity code. In an effort to remain
faithful to the semantics envisioned by the contract writer,
ZEUS creates a global variable for each external function return
value and enforces no optimization on all functions.

LIMITATIONS. Our prototype of ZEUS has a few limitations
across policy specification, translation and verification.

(1) Fairness properties involving mathematical formulae are
harder to check. For example, 25% can be represented in
several different forms. ZEUS depends on the user to accurately
define policies that involve such mathematical representations.
(2) ZEUS is faithful to most Solidity syntax. However,
constructs like throw and selfdestruct which have
no exact LLVM bitcode transformation are modeled as a
program exit. Further, runtime EVM parameters such as gas
consumption cannot be precisely computed at the source level.
Thus, ZEUS is overly conservative in its runtime behavior
modeling and does not explicitly account for these parameters.
(3) ZEUS does not support virtual functions in contract
hierarchy, i.e., use of super keyword, which resolves the
function call at runtime, dependent on the final inheritance
graph. We manually analyzed the 23 such contracts in our
dataset and resolved the super linkages.
(4) Solidity’s assembly block allows use of EVM bytecode
alongside regular Solidity statements. Even though real-world
contracts rarely use assembly (only 45 out of 22, 493
contracts in our data set use it), ZEUS is conservative and
does not analyze contracts with an assembly block.
(5) ZEUS supports verification of safety properties, i.e., state
reachability expressible via quantifier-free logic with integer
linear arithmetic. Verification of liveness (i.e., something good
must eventually happen) requires support for linear temporal
logic, and is currently not supported by ZEUS. Extending ZEUS
to support other kinds of properties such as trace- or hyper-
properties does not require changes to the core design and we
leave it for future work.

10

(1) mapping(address => uint) private userBalances;
(2) function withdrawBalance’() {
(3) uint amountToWithdraw = userBalances[msg.sender];
(4) if (amountToWithdraw > 0) {
(5) assert(false);
(6) msg.sender.call(userBalances[msg.sender]);)
(7) userBalances[msg.sender] = 0;
(8) }
(9) }
(10) function withdrawBalance() {
(11) uint amountToWithdraw = userBalances[msg.sender];
(12) if (amountToWithdraw > 0) {
(13) withdrawBalance’();
(14) msg.sender.call(userBalances[msg.sender]);
(15) userBalances[msg.sender] = 0;
(16) }
(17) }

Fig. 14: Same-function reentrancy detection for example in Fig. 2.

C. Handling Correctness Bugs

ZEUS provides verification for the correctness issues
described in § III-A and § III-C. We discuss the verification
logic for them as implemented in several LLVM passes below.

(1) Reentrancy: Reentrancy in Solidity can happen via the
call method. send only invokes the default function with
limited gas for logging purposes. ZEUS handles same-function
reentrancy by first cloning the function under consideration,
and inserting a call to the clone before the invocation to call.
Fig. 14 shows the patched function for the example in Fig. 2.
Note that ZEUS ensures that the patch is done within the same
basic block so as to ensure that if the cloned function is called,
then the invocation to call is also made. Further, we also
assert false before the call code. If the verifier finds a path
leading to this assert, it indicates a bug.
Cross-function reentrancy can be handled similarly by patching
different functions. However, it is not scalable due to state
space explosion even with small number of functions. We leave
efficient detection of cross-function reentrancy for the future.
(2) Unchecked send: Detection of unchecked send bug
requires identifying any subsequent accesses to global state
variables in case of a failed send call. ZEUS initializes a global
variable checkSend to true and takes its conjunction with
return value from every send operation. For every subsequent
write of a global variable, an LLVM pass automatically inserts
an assert(checkSend) in the bitcode.
(3) Failed send: Recall that the aim here is to prevent
reverting the transaction by not invoking throw on a failed
send call. The detection of this bug leverages the same check
as the unchecked send scenario, but places the assertion
ahead of the throw. While the throw encountered may be
due to some other condition in the code, the counterexample
indicates a possibility of reverting the transaction due to control
flow reaching a throw on a failed send, not necessarily the
immediate throw associated with the send.
(4) Integer overflow/underflow: An LLVM pass implements
the overflow/underflow detection checks for all arithmetic
operations [21], consistent with Solidity’s semantics, i.e., an
overflow/underflow for integers causes a wrap around.
(5) Block/ Transaction state dependence: Bug detection
for these classes requires context sensitive information. For
example, block state dependence requires determining if block
variables, such as timestamp, flow into send or call. We
implement our own taint analysis pass over LLVM bitcode
and use symbolic model checking to eliminate infeasible paths.

Category #Contracts #LOC (K) #Send/Call #Ext. CallsSource LLVM
DAO 140 2.8 24.3 252 350
Game 244 23.3 609.2 851 16
Token 290 25.2 385.9 311 271
Wallet 72 10.8 105.9 186 6
Misc. 778 47.6 924.3 1102 498
Total 1524 109.7 2049.6 2702 1141

Table 3: Characterization of the dataset.

Note that Solidity’s lack of pointer arithmetic, unlike C/C++,
eases our taint tracking implementation.
(6) Transaction order dependence: We detect transaction
order dependence by determining potential read-write hazards
for global variables that can influence Ether flows. Specifically,
we taint all global variables that are written to and then
determine if this taint flows into a send or call.

VI. EVALUATION

EXPERIMENTAL SETUP. All experiments were performed
atop an IBM System x3850 X5 machine having 4 Intel
Xeon E7-4860 CPUs at 2.27 GHz with 10 cores each and
2 threads/core, and 512 GB of RAM, running 64-bit Ubuntu
v14.04. We built our Solidity to LLVM bitcode translator
over solc [42], which is compatible with LLVM 3.6. We
used a stable build of Seahorn [38] (snapshot of March 31st)
as our verifier and set a timeout threshold of 1 minute. For
comparisons with Oyente, we use their snapshot as available
on April 15th, and keep a timeout duration of 30 minutes [69].

A. Data Set

We periodically scraped Etherscan [19], [20],
Etherfund [18], Etherchain [12] and EtherCamp [11]
explorers over a period of three months and obtained source
code for 22, 493 contracts at distinct addresses. We discounted
45 contracts that had an assembly block in their source,
and obtained 1524 unique contracts (as per their sha256
checksum). In the remainder of the section, we present results
only for these unique contracts, unless specified otherwise.

We analyzed all unique contracts and classified them
under five categories. “DAO” enlists all contracts that
involve DAO-style investment. Contracts involving games
and decentralized gambling, are clubbed under “Game”.
“Token” contracts implement the standard tokens for designing
financial instruments. “Wallet” contracts implement a user
wallet. All other contracts are listed under “Misc”. Table 3
summarizes their characteristics. We note that contracts in
the “DAO” and “Token” categories leverage a lot of external
functionality, unlike “Game” and “Wallet” that appear to be
self-contained. “Game” contracts involve significantly more
number of send/call invocations than any other category,
indicating a lot of Ether transfer between participants. “Misc.”
contracts account for half of the unique contracts, indicating
the diverse nature of contracts available on Ethereum. Lastly,
the generated LLVM bitcode is an order of magnitude more
than the source LOC, since it is unoptimized.

Fig. 15a shows the frequency of duplicates across our data
set. We observe that less than 5% contracts have more than
10 duplicates. For example, one wallet contract [50] in our
data set was duplicated 10.3K times. Further, the frequency of

11

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F

Contract Frequency

(a) Frequency of duplicate contracts.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

Solidity LOC

(b) Source LOC across contracts.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

C
D

F

LLVM LOC

(c) LLVM LOC across contracts.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
D

F

LLVM Instructions

Arithmetic

Branch

Alloc

Call

(d) Frequently used LLVM operations.

Fig. 15: Data set characterization.

duplicate token contracts at different addresses was also high.
In other words, contracts providing useful functionality are
more likely to be duplicated. Fig. 15b plots the source LOC
in Solidity for the unique contracts. The total source LOC was
over 111K, while mean and median were 74 and 54 LOC
respectively. The largest contract we analyzed had 1405 LOC.
However, over 90% of the contracts have 200 LOC or less.

ZEUS generates more than 1K LOC of LLVM bitcode for
around 30% of the contracts, with maximum being 91, 338.
(per Fig. 15c) The mean and median bitcode per contract
were 1354 and 439 respectively. In all, ZEUS verified over
2M lines of bitcode. Note that our LOC measurements did
not include any blank lines or comments. Lastly, we plot
the frequently occurring operations in the bitcode. Fig. 15d
presents the results for top four classes of operations, besides
memory load, store and GetElementPtr. We observe that
“arithmetic” operations are as frequent as “comparison”, “call”
and “alloc” operations.

B. Results with Solidity-based Smart Contracts

CORRECTNESS AND MINER’S INFLUENCE. We evaluate
ZEUS for all 1524 unique contracts for issues described
in § III-A and § III-C, and compare with Oyente for the
common bug classes, i.e., reentrancy, unchecked send, block-
state dependence and transaction-order dependence. We note
output for each scenario as either “Safe” or “Unsafe” (i.e.,
there is a potential issue). In case the verifier throws an error
or quits before the timeout, we categorize the contract as “No
Result”. All other cases are categorized under “Timeout”.

Note that Solidity contracts are small and have few
local/global variables, which makes it tractable to capture/track
dependencies. Further, since no tools exist to ascertain the
ground truth, we manually validated each result to determine
the set of false positives and negatives. A false positive occurs
when ZEUS returns “Unsafe” but the contract is actually
“Safe”, while a false negative occurs when ZEUS returns
“Safe” when the contract is actually “Unsafe”. The false alarm
rate is the ratio of false positives over the total results returned,
i.e., both “Safe” and “Unsafe”. Table 4 lists the results for both
ZEUS and Oyente. The entire set of results are also available
at https://goo.gl/kFNHy3.

(1) Reentrancy: ZEUS detects 54 contracts as vulnerable
to reentrancy. More importantly, it gives 0 false positives
and negatives, primarily due to its callee function patching
mechanism (per § V-C). In contrast, Oyente reports 265
contracts to be susceptible to reentrancy. Since Oyente does not

distinguish between send and call functions at the bytecode
level, it also considers reentrancy on send, which cannot occur
(recall § III-A). Hence, it reports a large number of unsafe
contracts, with a high false alarm rate of over 31%.
(2) Unchecked send: ZEUS reports 324 contracts affected
by the unchecked send bug, with 3 false positives and 0 false
negatives. We analyzed the offending contracts and observed
that ZEUS’s over-approximation in havocing all globals to
traverse control flow not intended by the contract developer
and detect bugs along those paths. In contrast, Oyente marked
112 contracts as unsafe with no result in 203 contracts. Further,
it reports a high false alarm rate of around 7.5%.
(3) Failed send: ZEUS detects 447 contracts vulnerable to
the failed send bug with 0 false positives and negatives.
(4) Integer overflow/underflow: Smart contracts involve a
lot of arithmetic operations (per Fig. 15d), and contract writers
typically do not check for overflow/underflow conditions. This
is corroborated by the fact that 1095 of the 1524 contracts (or
around 72%) are vulnerable to this bug.
However, ZEUS also reports 40 false positives (i.e., a false
alarm rate of 2.7%). We manually analyzed all false positives
and observed that they stem due to ZEUS havocing all
globals. For example, in one contract the percentage payout
was declared a global with a fixed value. However, ZEUS
initializes it to the entire data domain, following which an
operation using the payout variable causes the operation to
overflow. A better program analysis (or abstract refinement) of
smart contracts can help weed out such cases, where it is not
required to assign the entire data domain to a global variable.
(5) Transaction state dependence: ZEUS found 1513
contracts out of 1524 to be safe, while only 8 contracts were
deemed unsafe, with 0 false positives and negatives. ZEUS
was successfully able to detect the vulnerability as described
in Fig. 6 in the contract LittleEthereumdoubler [17].
(6) Block state dependence: ZEUS found 250 contracts to
be vulnerable, with 0 false positives/negatives. In contrast,
Oyente marked 15 contracts as unsafe, and failed to provide
results for 711 contracts (either due to timeout or no result).
ZEUS is conservative and considers all block parameters can
be modified, while Oyente considers only timestamp.
We observed that solWallet [50], which has over 1.4 million
Ether in balance, is also susceptible to the block state
dependence bug. It uses now (an alias for block.timestamp)
that can easily be tampered with by the miner [14]. For
example, a miner can use a value of now, which can lie
anywhere between the current timestamp and 900 seconds in
the future, and allow monetary transactions (close to the end
of the day) even when its daily limit has been exhausted.

12

https://goo.gl/kFNHy3

Bug
ZEUS Oyente

Safe Unsafe No Result Timeout False +ve False -ve % False Safe Unsafe No Result Timeout False +ve False -ve % False
Alarms Alarms

Reentrancy 1438 54 7 25 0 0 0.00 548 265 226 485 254 51 31.24
Unchkd. send 1191 324 5 4 3 0 0.20 1066 112 203 143 89 188 7.56
Failed send 1068 447 3 6 0 0 0.00
Int. overflow 378 1095 18 33 40 0 2.72
Tx. State Dep. 1513 8 0 3 0 0 0.00
Blk. State Dep. 1266 250 3 5 0 0 0.00 798 15 226 485 2 84 0.25
Tx. Order Dep. 894 607 13 10 16 0 1.07 668 129 222 485 116 158 14.20

Table 4: ZEUS’s evaluation and comparison with Oyente [69].

(7) Transaction order dependence: ZEUS reported 607
contracts (or 39.8%) as unsafe, with 16 false positives, and
0 false negatives. The false positives stem from havocing
the globals leading to traversal of paths not intended by the
developer. In contrast, Oyente reported 129 contracts as unsafe
along with no decision for 707 contracts. It reported a false
alarm rate of 14.2%; an order of magnitude more than ZEUS.

SUMMARY. The above results enable four key observations:

• 21, 281 out of 22, 493 contracts (or 94.6%) containing more
than $0.5 billion worth of Ether are vulnerable to one or more
bugs. Across the unique contracts, 1194 out of 1524 contracts
were found to be vulnerable to one or more bugs.
• ZEUS’s use of abstract interpretation along with symbolic
model checking for verification makes it sound. We observed
zero false negatives for all the seven bug classes. The low
false alarm rate can be further mitigated by improved program
analysis to weed out scenarios not intended by the developer.
• Use of CHCs enable quick verification, with only 44 out of
1524 contracts (or 2.89%) timing out in at least one bug class.
ZEUS’s timeout threshold is fairly low at just 1 minute.
• Oyente is neither sound nor complete, and reports a high
false alarm rate for three of its four bug classes. Further, it
times out or gives no result for 711 contracts (or 46.7%) in
our dataset. These numbers are consistent with their published
dataset, where almost half the tests gave no result [34].

DISCUSSION. ZEUS determines a contract as either safe or
unsafe, i.e., if a contract is vulnerable in principle or not. An
unsafe result does not guarantee a trivial exploit. For example,
several contracts are vulnerable to integer overflow because
they do not check for the bounds. Thus, ZEUS marks them
as unsafe. Even though possible in principle, these contracts
may not be susceptible to an immediate exploit, say when
the payouts use uint256 for calculation. Similarly, contracts
using timestamp for control flow, may not be affected
immediately, but a path may exist with a certain value of the
timestamp that affects the Ether flow in a send invocation.

FAIRNESS. We select representative contracts from the four
classes (per § VI-A) and apply contract specific properties
along with a common fairness policy across all contracts.

(1) DAO: CrowdFundDao [9] implements a DAO scheme
allowing investors to choose when to pay and withdraw their
funds. We implemented two policies: (a) blacklisted developers
cannot participate in the scheme, and (b) the investment must
be more than a threshold limit. ZEUS determined that none of
these checks were encoded in the contract.
(2) Game: DiceRoll [10] is a dice game where players join
a game by placing a bet. We implemented a policy that the
number of dice rolls for a player must be limited. We observed

that the game did not cap the number of dice rolls per user.
(3) Token: Tokens, such as StandardToken [43], are used
to implement financial instruments. While most of them
consider integer underflow possibilities on the sender side, it
is important for them to consider whether token transfer could
result in overflows on the receiver. We implemented this policy
on several contracts and observed that some of them, such as
Campaign [5], do not consider overflows at the recipient.
(4) Wallet: Wallet [50] implements several functionalities for
users, including a daily withdrawal limit. We check for two
policies: (a) a user cannot send money to themselves, and (b)
there is a limit on the amount being transferred per transaction.
We observed that both these policies report a violation.
(5) Common policy: Solidity provides selfdestruct to kill
a contract and return its balance to an address. We check if
the construct is invoked only by the owner. We observed that
284 out of 1524 contracts had this construct, with around 5.6%
reporting a violation of the policy with no false alarms.

C. Performance

(I) INSTRUCTION OVERHEAD. ZEUS’s Solidity to LLVM
bitcode translator introduces checks for several bugs described
in § III-A and § III-C. Fig. 16a plots a CDF of this instruction
overhead due to additional LLVM bitcode LOC introduced
per contract. We observe that ZEUS introduces less than 50
LOC for 97% of contracts across five of the seven bug classes.
For integer overflow/underflow, ZEUS’s checks account for less
than 200 LOC in 95% of the contracts. However, detection of
transaction order dependence incurs maximum overhead, with
20% contracts requiring over 500 LOC for the required checks.

(II) ANALYSIS COMPLEXITY. We measure the verification
complexity by determining the number of rules generated
and their depth per contract across the seven bug classes.
Fig. 16b and Fig. 16c plot the results. We observe that 75%
of contracts across all categories generate less than 50 rules
with depth of around 700. Overall, integer overflow generates
maximum constraint rules and depth across all categories,
with a maximum of 1035 rules and depth of 277, 345. This
behavior is consistent with our observation that contracts have
significant amount of arithmetic operations (recall Fig. 15d).

(III) ANALYSIS TIME. We determine ZEUS’s verification time
for each unique contract in our data set and compare against
Oyente. Fig. 16d plots the CDF of the results. We observe
that ZEUS takes a minute or less for verifying 97% contracts
(as indicated by the vertical line). Only 44 contracts out of
1524 timeout or give no result for one or more bug classes. In
contrast, Oyente returns results for only 40% contracts within
one minute. Furthermore, it provides no result or timeouts
(even after 30 minutes) for around 43% contracts.

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200

C
D

F

Overhead (LOC)

Reentrancy
Unchecked send

Failed send
Integer overflow

Tx. state dep
Blk. state dep.
Tx. order dep.

(a) LLVM bitcode instruction overhead.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 50 100 150 200 250 300

C
D

F

constraints

Reentrancy
Unchecked send

Failed send
Integer overflow

Tx. state dep.
Blk. state dep.
Tx. order dep

(b) Verification rules generated.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 500 900 1300 1700 2100

C
D

F

Constraint depth

Reentrancy
Unchecked send

Failed send
Integer overflow

Tx. state dep.
Blk. state dep.
Tx. order dep

(c) Verification constraints generated.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Time (min)

Zeus

Oyente

(d) Verification time in minutes.

Fig. 16: ZEUS’s performance.

D. Case Studies

We now demonstrate ZEUS’s versatility with other
blockchain platforms and verification engines. First, we port
a popular Solidity contract to Fabric [25]. Second, we use
SMACK [73] to verify fairness policies for the said contract.
We describe our experiences below.

Simple Dice [40] is a popular multi-player gambling
contract, where players put in a minimum deposit (along with
a fee) to play. The players have a 25% chance of winning the
entire balance. Also, every 40th player wins the jackpot, which
is considerably more than the balance. The fee and deposit rate
can only be changed by the owner, and is publicly visible.

To validate the contract, we check the following five
policies: (a) a minimum deposit is required to play the game,
(b) every 40th player does win the jackpot, (c) only the owner
can change the deposit and fee rate, (d) the owner cannot
participate in the game, and (e) every player must have an
equal chance of winning the jackpot, i.e., a player must not
have multiple entries when playing for the jackpot.

(I) FABRIC. Smart contracts in Fabric can be written in
high-level languages, such as GO and JAVA. Solidity’s global
variables that persist state across transactions are mapped on
to the blockchain. In contrast, high-level languages do not
have this support; the globals share state across functions calls.
Fabric gets around this problem by defining a shim layer for
each high-level language that exports APIs to allow smart
contracts to explicitly manage state atop the blockchain.

We ported the Simple Dice contract to GO and linked it
against Fabric’s mock-stub [26]. However, we noticed that
the mock-stub takes strings as input and converts them to
the required data types using standard GO libraries. Since
Seahorn does not have support for strings, we fixed the mock-
stub to take integers as input. While policy specification is
automated for Solidity, we manually edited the GO code
and placed the correct assertions along the required program
paths, corresponding to the above mentioned policies. We then
leveraged llgo [28] to generate LLVM bitcode for Simple
Dice and verified the policies with Seahorn.

(II) SMACK. To leverage SMACK as the verifier of choice,
we had to make three key modifications. First, since SMACK
supports integer operations up to 64 bytes [31], we had to
port our Solidity to LLVM bitcode translator to work with 64
bytes. Note that Solidity supports integers of length 256 bytes.
Second, SMACK, unlike Seahorn, requires developers to use
different APIs to request for the entire integer domain [41].

For example, one has to use VERIFIER nondet ushort
for modeling integer domains for unsigned short, and

VERIFIER nondet uint for unsigned int. Third, the
APIs for invocation to the verifier are different between
SMACK and Seahorn. Overall, we required around 50 lines of
modifications to ZEUS to make it compatible with SMACK.
With our SMACK-compatible ZEUS, we verified the five
fairness policies for Simple Dice as described earlier.

Our experiences with both Fabric and SMACK suggest that
it is easy to extend ZEUS to other blockchain platforms and
verifiers with only minor changes.

VII. RELATED WORK

SMART CONTRACT BUG DETECTION. We now compare
and contrast ZEUS with related work in the area of smart
contract bug detection, apart from Oyente [69], Bhargavan et
al. [55] and Why3 [23], [51], which we have discussed earlier.
Delmolino et al. [59] document several classes of mistakes
when developing contracts, suggest ways to mitigate these
errors, and advocate best practices for programming smart
contracts. In contrast, ZEUS presents a formal verification
framework for smart contracts that enables users to build and
verify correctness and fairness policies over them.

POLICY SPECIFICATION. Naccio [61], PoET/Pslang [60]
and Polymer [54] enable policy specification for security
properties. Like prior work, ZEUS ensures that the verification
policy is defined separately from the main application. This
separation of logic makes it easier to understand, verify, and
modify the security policy. XACML [52] defines a declarative
fine-grained, attribute-based access control policy language
that inspires ZEUS’s syntax for policy declaration.

VIII. CONCLUSION

We present the design and implementation of ZEUS—a
framework for analyzing safety properties of smart contracts.
ZEUS leverages abstract interpretation and symbolic model
checking, along with the power of CHCs to quickly ascertain
the verification conditions. We build the first Solidity to LLVM
bitcode translator to automatically insert verification conditions
given a policy specification. Our evaluation with over 22.4K
Solidity smart contracts indicates that about 94.6% of them
(with a net worth of more than $0.5 billion) are vulnerable.
ZEUS is sound (with zero false negatives) and significantly
outperforms Oyente for contracts in our data set, with low
false positive rate and an order of magnitude improvement in
time for verification.

14

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable
comments. We are also grateful to Prasad Naldurg for his
feedback on an earlier draft of the paper.

REFERENCES

[1] “Analysis of the DAO exploit,” http://hackingdistributed.com/2016/06/
18/analysis−of−the−dao−exploit/.

[2] “Auction house,” https://git.io/vFAl6.
[3] “Blockchain investment in 2016,” https://www.cryptocoinsnews.com/

pwc−expert−1−4−billion−invested−blockchain−2016/.
[4] “Buggy contract,” https://etherscan.io/address/

0xdfa42284475636ecc1e04f519b075ec7f1e04f48.
[5] “CampaignToken,” https://etherscan.io/address/

0xa0388ffb2a3c198dee723135e0caa423840b375a.
[6] “Computation in Fallback Function,”

https://ethereum.stackexchange.com/questions/5992/how−much−
computation−can−be−done−in−a−fallback−function.

[7] “Contest contract,” https://etherscan.io/address/
0x98086130278fe48f2f0330e330df6ed6c91ce4f7#code.

[8] “Cross-function Race Condition,” https://git.io/vFA4y.
[9] “CrowdFundDAO,” https://live.ether.camp/account/

9b37508b5f859682382d8cb6467a5c7fc5d02e9c/contract.
[10] “DiceRoll,” https://ropsten.io/address/

0xb95bbe8ee98a21b5ef7778ec1bb5910ea843f8f7.
[11] “EtherCamp,” https://live.ether.camp/.
[12] “Etherchain,” https://www.etherchain.org/contracts.
[13] “Ethereum,” https://www.ethereum.org/.
[14] “Ethereum Block Protocol,” https://git.io/vFA8I.
[15] “Ethereum Blog,”

https://blog.ethereum.org/2016/06/10/smart−contract−security/.
[16] “Ethereum Contract Security,” https://git.io/vFA8a.
[17] “Ethereum Doubler,” https://etherscan.io/address/

0x83651a62b632c261442f396ad7202fe2a4995e3a#code.
[18] “Ether.Fund,” https://goo.gl/fkbj1j.
[19] “Etherscan,” https://etherscan.io/accounts/c.
[20] “Etherscan - Ropsten,” https://ropsten.io/accounts/c.
[21] “Exception on overflow #796,” https://git.io/vFA8e.
[22] “Formal Verification and Ethereum,”

https://ethereum.stackexchange.com/questions/11092/what−is−formal−
verification−and−why−is−it−important−for−smart−contracts.

[23] “Formal Verification for Solidity Contracts,” https://forum.ethereum.
org/discussion/3779/formal−verification−for−solidity−contracts.

[24] “HackerGold Bug,” https://git.io/vFAl2.
[25] “Hyperledger Fabric,” https://hyperledger.org/projects/fabric.
[26] “Hyperledger Fabric Mockstub,” https://git.io/vFA8Y.
[27] “Inian Parameshwaran,” Personal Communication.
[28] “LLVM-based compiler for Go ,” https://git.io/FPuO.
[29] “Logical bug,” https://etherscan.io/address/

0xef71862273817c9e082ca2c92486c8dcdcd9356f.
[30] “Loi Luu,” Personal Communication.
[31] “Model arbitrary integer size,” https://git.io/vFAlu.
[32] “Multiply your ether,” https://etherscan.io/address/

0xc357a046c5c13bb4e6d918a208b8b4a0ab2f2efd#code.
[33] “Oyente: An Analysis Tool for Smart Contracts,” https://git.io/vFAlX.
[34] “Oyente Results,” https://raw.githubusercontent.com/oyente/

benchmarks/master/benchmark/results.json.
[35] “Parity MultiSig bug,”

http://hackingdistributed.com/2017/07/22/deep−dive−parity−bug.
[36] “Remove tx.origin #683,” https://git.io/vFA8n.
[37] “Scoping and Declarations,”

https://solidity.rtfd.io/en/develop/control−structures.html.

[38] “SeaHorn,” https://seahorn.github.io/.
[39] “Send w/Throw Is Dangerous,” http://vessenes.com/ethereum−

griefing−wallets−send−w−throw−considered−harmful/.
[40] “Simple Dice,” https://etherscan.io/address/

0x237f29bbFd52C768A02980eA8D4D983a1D234eDC.
[41] “Smack,” https://git.io/vFAlB.
[42] “Solidity Programming Language.” https://git.io/vFA47.
[43] “StandardToken,” https://git.io/vFAlg.
[44] “The DAO,” https://en.wikipedia.org/wiki/The DAO (organization).
[45] “The DAO is kind of a mess,” https://www.wired.com/2016/06/

biggest−crowdfunding−project−ever−dao−mess/.
[46] “Tx.Origin And Ethereum Oh My!”

http://vessenes.com/tx−origin−and−ethereum−oh−my/.
[47] “Unchecked-Send Bug,” http://hackingdistributed.com/2016/06/16/

scanning−live−ethereum−contracts−for−bugs/.
[48] “Underhanded Solidity coding,” https://redd.it/4e5y30.
[49] “Units and Globally Available Variables,”

https://solidity.rtfd.io/en/develop/units−and−global−variables.html.
[50] “Wallet,” https://etherscan.io/address/

0xab7c74abc0c4d48d1bdad5dcb26153fc8780f83e.
[51] “Why3,” http://why3.lri.fr/.
[52] “XACML,” https://tools.ietf.org/html/rfc7061.
[53] J. Barnat et al., “DiVinE 3.0 – An Explicit-State Model Checker for

Multithreaded C & C++ Programs,” in CAV ’13.
[54] L. Bauer et al., “Composing Security Policies with Polymer,” in PLDI

’05.
[55] K. Bhargavan et al., “Formal Verification of Smart Contracts: Short

Paper,” in PLAS ’16.
[56] N. Bjørner et al., “Program Verification as Satisfiability Modulo

Theories,” in SMT ’12.
[57] A. R. Bradely, “SAT-based Model Checking without unrolling,” in

VMCAI 2011.
[58] M. Castro et al., “Practical Byzantine Fault Tolerance,” in OSDI ’99.
[59] K. Delmolino et al., “Step by Step Towards Creating a Safe Smart

Contract: Lessons and Insights from a Cryptocurrency Lab.” in FC
’16.

[60] U. Erlingsson et al., “IRM Enforcement of Java Stack Inspection,” in
S&P ’00.

[61] D. Evans et al., “Flexible Policy-Directed Code Safety,” in S&P ’99.
[62] A. Gurfinkel et al., “The SeaHorn Verification Framework,” in CAV

’15.
[63] A. Juels et al., “The Ring of Gyges: Investigating the Future of

Criminal Smart Contracts,” in CCS ’16.
[64] A. Komuravelli et al., “SMT-based Model Checking for Recursive

Programs,” in CAV’14.
[65] A. E. Kosba et al., “Hawk: The Blockchain Model of Cryptography

and Privacy-Preserving Smart Contracts,” in S&P ’16.
[66] L. Lamport, “The Part-time Parliament,” ACM Trans. Comput. Syst.
[67] C. Lattner et al., “LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation,” in CGO ’04.
[68] L. Luu et al., “Demystifying Incentives in the Consensus Computer,”

in CCS ’15.
[69] ——, “Making Smart Contracts Smarter,” in CCS ’16.
[70] K. L. McMillan, “Interpolants and Symbolic Model Checking,” in

VMCAI 2007.
[71] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.”

[Online]. Available: https://bitcoin.org/bitcoin.pdf
[72] D. Ongaro et al., “In Search of an Understandable Consensus

Algorithm,” in USENIX ATC’14.
[73] Z. Rakamarić et al., “SMACK: Decoupling Source Language Details

from Verifier Implementations,” in CAV ’14.
[74] F. Zhang et al., “Town Crier: An Authenticated Data Feed for Smart

Contracts,” in CCS ’16.
[75] J. Zhao et al., “Formalizing the LLVM Intermediate Representation

for Verified Program Transformations,” in POPL ’12.

15

http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://git.io/vFAl6
https://www.cryptocoinsnews.com/pwc-expert-1-4-billion-invested-blockchain-2016/
https://www.cryptocoinsnews.com/pwc-expert-1-4-billion-invested-blockchain-2016/
https://etherscan.io/address/0xdfa42284475636ecc1e04f519b075ec7f1e04f48
https://etherscan.io/address/0xdfa42284475636ecc1e04f519b075ec7f1e04f48
https://etherscan.io/address/0xa0388ffb2a3c198dee723135e0caa423840b375a
https://etherscan.io/address/0xa0388ffb2a3c198dee723135e0caa423840b375a
https://ethereum.stackexchange.com/questions/5992/how-much-computation-can-be-done-in-a-fallback-function
https://ethereum.stackexchange.com/questions/5992/how-much-computation-can-be-done-in-a-fallback-function
https://etherscan.io/address/0x98086130278fe48f2f0330e330df6ed6c91ce4f7#code
https://etherscan.io/address/0x98086130278fe48f2f0330e330df6ed6c91ce4f7#code
https://git.io/vFA4y
https://live.ether.camp/account/9b37508b5f859682382d8cb6467a5c7fc5d02e9c/contract
https://live.ether.camp/account/9b37508b5f859682382d8cb6467a5c7fc5d02e9c/contract
https://ropsten.io/address/0xb95bbe8ee98a21b5ef7778ec1bb5910ea843f8f7
https://ropsten.io/address/0xb95bbe8ee98a21b5ef7778ec1bb5910ea843f8f7
https://live.ether.camp/
https://www.etherchain.org/contracts
https://www.ethereum.org/
https://git.io/vFA8I
https://blog.ethereum.org/2016/06/10/smart-contract-security/
https://git.io/vFA8a
https://etherscan.io/address/0x83651a62b632c261442f396ad7202fe2a4995e3a#code
https://etherscan.io/address/0x83651a62b632c261442f396ad7202fe2a4995e3a#code
https://goo.gl/fkbj1j
https://etherscan.io/accounts/c
https://ropsten.io/accounts/c
https://git.io/vFA8e
https://ethereum.stackexchange.com/questions/11092/what-is-formal-verification-and-why-is-it-important-for-smart-contracts
https://ethereum.stackexchange.com/questions/11092/what-is-formal-verification-and-why-is-it-important-for-smart-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://git.io/vFAl2
https://hyperledger.org/projects/fabric
https://git.io/vFA8Y
https://git.io/FPuO
https://etherscan.io/address/0xef71862273817c9e082ca2c92486c8dcdcd9356f
https://etherscan.io/address/0xef71862273817c9e082ca2c92486c8dcdcd9356f
https://git.io/vFAlu
https://etherscan.io/address/0xc357a046c5c13bb4e6d918a208b8b4a0ab2f2efd#code
https://etherscan.io/address/0xc357a046c5c13bb4e6d918a208b8b4a0ab2f2efd#code
https://git.io/vFAlX
https://raw.githubusercontent.com/oyente/benchmarks/master/benchmark/results.json
https://raw.githubusercontent.com/oyente/benchmarks/master/benchmark/results.json
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug
https://git.io/vFA8n
https://solidity.rtfd.io/en/develop/control-structures.html
https://seahorn.github.io/
http://vessenes.com/ethereum-griefing-wallets-send-w-throw-considered-harmful/
http://vessenes.com/ethereum-griefing-wallets-send-w-throw-considered-harmful/
https://etherscan.io/address/0x237f29bbFd52C768A02980eA8D4D983a1D234eDC
https://etherscan.io/address/0x237f29bbFd52C768A02980eA8D4D983a1D234eDC
https://git.io/vFAlB
https://git.io/vFA47
https://git.io/vFAlg
https://en.wikipedia.org/wiki/The_DAO_(organization)
https://www.wired.com/2016/06/biggest-crowdfunding-project-ever-dao-mess/
https://www.wired.com/2016/06/biggest-crowdfunding-project-ever-dao-mess/
http://vessenes.com/tx-origin-and-ethereum-oh-my/
http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/
http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/
https://redd.it/4e5y30
https://solidity.rtfd.io/en/develop/units-and-global-variables.html
https://etherscan.io/address/0xab7c74abc0c4d48d1bdad5dcb26153fc8780f83e
https://etherscan.io/address/0xab7c74abc0c4d48d1bdad5dcb26153fc8780f83e
http://why3.lri.fr/
https://tools.ietf.org/html/rfc7061
https://bitcoin.org/bitcoin.pdf

	I Introduction
	II Background
	III Motivation
	III-A Incorrect Contracts
	III-B Unfair Contracts
	III-C Miner's Influence

	IV Zeus
	IV-A Formalizing Solidity Semantics
	IV-B Formalizing the Policy Language
	IV-C Soundness
	IV-D Symbolic Model Checking via CHCs
	IV-E End-to-end example

	V Implementation
	V-A Policy Builder
	V-B Solidity to LLVM Bitcode Translator
	V-C Handling Correctness Bugs

	VI Evaluation
	VI-A Data Set
	VI-B Results with Solidity-based Smart Contracts
	VI-C Performance
	VI-D Case Studies

	VII Related Work
	VIII Conclusion
	References

