
Efficient Verification Solutions for Message Passing Systems

Subodh Sharma and Ganesh Gopalakrishnan
School of Computing, University of Utah, Salt Lake City, UT

Email: {svs,ganesh}@cs.utah.edu

Abstract—We examine the problem of automatically and
efficiently verifying the absence of communication related bugs
in message passing systems, specifically in programs written
using Message Passing Interface (MPI) API and Multicore
Communication API (MCAPI). A typical debugging or testing
tool will fail to achieve this goal because they do not provide
any guarantee of coverage of non-deterministic communication
matches in a message passing program. While dynamic ver-
ification tools do provide such a guarantee, they are quickly
rendered useless when an interleaving explosion is witnessed.
The general problem is difficult to solve, though we propose
that specialized techniques can be developed that can work on
top of dynamic verification schedulers thus making them more
efficient.

In this work, we provide point solutions to deal with
the interleaving explosion. Specifically, we present algorithms
that accomplish the following tasks: (i) identifying irrelevant
message passing operations (Barriers) in MPI programs that
add to the verification complexity and degrade application’s
performance and (ii) reducing substantially the relevant set of
interleavings using symmetry patterns; that needs to be ex-
plored for the detection of refusal deadlocks in MPI programs.
We also share our experience dealing with non-determinism
while verifying MCAPI programs which have a mixed use of
shared memory and message passing programming primitives.

Keywords-MPI; Dynamic Verification; Partial Order Reduc-
tion

I. AUTHOR INFO

Author: Subodh Sharma
Advisor: Ganesh Gopalakrishnan
Number of years in PhD program:5

II. INTRODUCTION

Message passing systems are ubiquitous with there
presence stretching across computing domains - starting
from high performance computing all the way to embed-
ded/heterogeneous multicore computing. While MPI [1] is a
one such message passing library which is used to program
most of today’s supercomputers and clusters, MCAPI [2] is
an API that is under development for writing programs that
will run on low power heterogeneous embedded multicore
systems. Although these concurrent libraries provide signif-
icant performance boost, they are also a source of worry.
The extensive use of non-deterministic communication prim-
itives (e.g., MPI receives with MPI_ANY_SRC), the non-
deterministic execution environments (e.g., programs where
communication is dependent on relative execution latency of

participating threads), and unobserved inter-API interactions
are the cause of hard to reproduce bugs(Hiesenbugs).

Typically the programs written using these APIs are tested
by debuggers [3]–[5] and other perturbation based [6] testing
tools. While there have been significant advances in the
debugging and testing methods, they lack the fine control
necessary to explore different schedules arising due to the
non-determinism in an message passing program. In short,
they fail to provide coverage guarantees.

Model checking tools can provide guaranteed coverage
(MPI-SPIN [7]), however constructing models for these
codes is often laborious and bug-prone. Recently created for-
mal dynamic verifiers such as ISP [8], [9] and DAMPI [10]
take an approach that integrates the best features of testing
tools (ability to run directly on user applications) and model
checking (coverage guarantees). They run the MPI program
under the control of a verification scheduler, guarantee to
detect all potential matches for non-deterministic (wildcard)
receives, and explore each of these matches in different runs
of the program. Thus, they exhaustively explore and ensure
full coverage of non-determinism.

With such unrestrained coverage of non-determinism, the
dynamic verifiers like ISP and DAMPI will have to grapple
with the inevitable interleaving explosion. For instance,
consider an MPI program with n+ 1 processes where each
of the n processes sends a message to the (n+1)th process.
The (n + 1)th process posts n wildcard receive calls (say,
in a loop). One can easily observe that even in such a
simple setting, there will be n! execution schedules. This
is clearly unacceptable: all dynamic verifiers must, ideally,
be equipped with approaches to detect when such exhaustive
explorations are unnecessary, and then avoid them.
Problem Statement: The problem of pruning the interleav-
ing space with multiple identical processes with symmetric
reasoning is formally undecidable [11]. We do not attempt
to provide another approximating solution to this problem.
However, we do propose a specialized dynamic analysis
method that will substantially reduce the number of inter-
leavings while detecting communication deadlocks. We have
implemented our initial work in this problem domain on top
ISP. Our method is an improvement of ISP’s algorithm called
POE (partial order avoiding elusive interleavings). We call
our method as MSPOE (macroscopic POE).

As a part of a larger effort of interleaving space reduction,
we also propose another specialized algorithm to identify



irrelevant synchronizing MPI operations and remove them.
Irrelevant MPI operations are those operations which when
removed, do not alter the communication structure of the
program. There are two-fold reasons for such operations to
be removed: (i) they unnecessarily increase the number of
MPI operations in the program, thus indirectly affecting the
number of schedules a program can have; (ii) they increase
the application running time and consequently increasing the
verification time of these applications.

Rest of the paper is presented in the following fashion:
Section III will briefly present our proposed solution for
detecting functionally irrelevant barriers (FIB) in an MPI
program followed by Section IV where we briefly discuss
our MSPOE algorithm. We finally present our experiences
with regard to threading and messaging non-determinism
while constructing a model checker for embedded hetero-
geneous multicores in Section V. Finally, we and conclude
with remarks on future work in Section VI.

III. FUNCTIONALLY IRRELEVANT BARRIERS

The importance of detecting irrelevant barriers comes
from a number of perspectives. Many MPI users are known
to employ collective barriers for “good measure”; they
are unsure whether it is necessary. The authors of [12]
narrate the example of an MPI program where a barrier was
considered irrelevant and was proposed to be removed. A
year later, they realized that its removal introduces a non-
benign race condition. In [13], it is shown that barriers can
consume a significant fraction of the total application time.
Of course, users wanting to control performance by avoiding
network or I/O contention may insert collective barriers. In
this case, they are employing functionally irrelevant barriers
for controlling the non-functional aspects of their program.
The FIB algorithm [14] can help these users by checking
that these barriers are indeed functionally irrelevant.

Motivating Example: Consider the example:
P0: Irecv(*, &handle); Barrier; Wait(&handle);
P1: Isend(to P0); Barrier; ...rest of P1...
P2: ...some code... Barrier; Isend(to P0);

Notice Irecv is the asynchronous MPI receive and Wait
call is a blocking call to check the successful completion of
the corresponding non-blocking request. Observe that there
is no Happens-Before (HB) ordering between Isends of P1
and P2. The Irecv and Isend from P0 and P1 can exist
past barriers. Thus, removing the barriers will not create any
new communication matchings for the Irecv and therefore
they are irrelevant.

Now consider an alternative example in which the Wait
in P0 is moved to be before its Barrier. Now, the collective
barrier becomes relevant. This is because there would be a
HB edge from Wait to Barrier as shown in Figure 1.
Hence, Barrier cannot be crossed until the Irecv finishes.
Therefore the Isend from P2 cannot issue, and Irecv must
finish based on the Isend from P1.

Figure 1. Example in Section III with Happens-Before edges

Results: The algorithm is implemented on top of ISP. Our
web page [15] provides detailed results regarding FIB. To
briefly summarize :
• Monte-Carlo: The code of Monte-Carlo, did not have

any barrier calls. To acid-test our implementation, we
deliberately inserted an irrelevant collective barrier,
which our implementation flagged as such. The run
times of the Fib algorithm are as follows: (i) with
4 processes, it explored 6 interleavings in 0.2 seconds,
and with 5 processes, it explored 24 interleavings in
1.52 seconds. In both cases, the overhead due to FIB
analysis was marginal (< 1%).
• 2D Diffusion This code had 2 irrelevant barriers

which were caught by the tool. In fact, this example
does not employ wildcard receives, and so all its barri-
ers are irrelevant, and Fib finishes with one interleaving.
The runtime of Fib on this example was less than a
second. This reinforces that without wildcards we need
only one interleaving.
• Umpire test suite: We ran our tool successfully on

all the 69 tests that came along with Umpire tool [16].
Of the 36 tests that had barriers, all were flagged as
irrelevant, with negligible runtimes.

IV. SYMMETRIC MSPOE

Our method MSPOE [17] is implemented by augmenting
the ISP tool and its POE. We first let POE compute the
potential send matches for MPI non-deterministic receives
as it currently does. The execution history, following the
non-deterministic receive, is then examined by MSPOE. It
chooses to include only some of these sends (called relevant
sends) to match this non-deterministic receive for later
explorations. These sends are the ones considered relevant
to cause refusal deadlocks. In effect, instead of exploring
all executions MSPOE explores representative executions
sufficient to reveal refusal deadlock.

Observation: For an MPI program that does not decode
data and has a refusal deadlock, it must either have an un-
equal number of sends and receives in some execution path,
or must satisfy the following conditions: (i) it employs a
process posting a wildcard receive and a specific receive and



Interleavings Time(sec)
Benchmark # of procs Deadlocks? ISP ISP+sym-red ISP ISP+sym-red

Matrix Multiply 4 No 18 1 2.93 .16
Red-2D-Diffusion 4 No 90 1 29.4 .33

2D-Diffusion 4 No >5000 1 >3600 3.34
Monte Carlo 6 No 120 1 24.86 .005

Integrate 4 No 81 31 19.46 7.4
Madre 4 No >8000 1 >3600 .77

Table I

(ii) a previous wildcard receive consumes a send that was
meant for the later occurring specific receive, thus orphaning
the specific receive. MSPOE exploits this observation and
computes relevant sends based on the occurrence of specific
receives.
Motivating Example: In the example shown below there is
a deadlock introduced by the use of the deterministic receive
call.

P0: S0,1(to P4);
P1: S1,1(to P4);
P2: S2,1(to P4);
P3: S3,1(to P4);
P0: R4,1(*);R4,2(from P3);R4,3(*);R4,4(*);

Figure 2 shows that if R4,1 were to match S3,1 (right-
most transition from the initial node), the subsequent deter-
ministic call (R4,2) will be orphaned, thus creating a refusal
deadlock.

Figure 2. Possibilities after first R(*) match

ISP would explore all the matches starting from leftmost
choice shown in Figure 2 and then moving right with every
new run, generating four interleavings before finding the
deadlock. MSPOE will, on the other hand, choose S3,1 as
the next relevant send to explore after any initial run. This
guarantees that the deadlock will be detected in at most two
interleavings.

Results: We implemented the MSPOE algorithm on top of
ISP. All experiments were run on Intel Core Duo (2 Ghz)
with 3 GB RAM. Table I on page 3 summarizes MSPOE
results.

V. MULTICORE CHECKER (MCC)

Our main contribution to verify MCAPI applications
is the MCC tool [18] that checks the correct use of the

connection-less message passing constructs of MCAPI
employing a reference implementation of the API. It
is essential for a verification scheduler that provides
guaranteed coverage to replay the program executions
deterministically. This becomes a challenge in MCAPI
space because of the following reasons: (i) an external
thread scheduler (e.g. PThread) which makes it hard for a
verification scheduler like MCC to get a control over the
thread schedulings, (ii) presence of only wildcard receives,
and (iii) presence of data dependent communication flow.

Consider the program shown below:

P0: S(to 2, 10); | P2: R(*, in x); R(*, in y) ;
P1: S(to 2, 20); | if(x ==20)

assert ERROR;

If this example were an MPI program, ISP would rewrite
the wildcard receives in to the deterministic receives after
deciding on a specific match to explore in a program run.
In the absence of deterministic receives in MCAPI, it was
a challenge for MCC to enforce a deterministic match at
the runtime. Consider the following situation: MCC decides
to match R(*, in x) with send from P0. The scheduler
signals the participating threads to issue these calls to the
runtime. However, notice the thread scheduling is not under
the control of MCC. Depending on a thread’s execution
latency, it is possible that R(*, in x) has not finished yet.
In the meantime if MCC signals P1 to issue its send then
we will have a communication race in the MCAPI runtime
where sends from both P1 and P2 are competing to match
P2′s first receive. Observe that despite MCC having decided
a deterministic match, a race was witnessed at runtime. MCC
handles this situation by introducing extra fence operations
in the instruction stream to make sure the intended send-
receive match completes before next matching pair of events
are issued in to the runtime.

Thus, it is of paramount importance for any developer of a
verification scheduler to obtain a good grip of the program’s
execution environment in order to explore and re-play the
execution runs deterministically.

VI. CONCLUSIONS AND FUTURE WORK

We have presented our initial proposal to combat non-
determinism while verifying message passing systems. Our



initial results are inspiring. We obtained dramatic interleav-
ing space reductions using our MSPOE algorithm; in some
cases, from million interleavings to one. Our FIB method
successfully detected multiple irrelevant barriers in several
MPI benchmarks. We finally presented our experiences
and lessons learnt while developing the MCC verifier for
programs with mixed use of programming models. All of
the above accomplishments are a part of our multifarious
attack on problems in the message passing arena.
Future Work: We will extend our MSPOE algorithm to
handle cases which have an obvious received data decod-
ing that controls the ensuing communication flow of the
program. To handle data decoding, we would require an
MPI specific control flow graph (CFG) of the program.
In [19], a CFG for MPI programs ( p-cfg) is presented.
However, p-cfg can handle only deterministic MPI programs.
We intend to work on improving the p-cfg to handle non-
deterministic MPI operations. Furthermore, we will develop
flow-sensitive static analysis methods on top of the improved
p-cfg to analyze conditional communication patterns. After
analyzing the MPI programs with such patterns, the dynamic
verification scheduler could be alerted to back-off from
aggressive interleaving reduction optimizations for specific
instance of wildcard receives.

We will also study the mixed use of programming models
to program heterogeneous multicores and plan to device a
stricter Happens-Before orderings in programs where inter-
API interactions manifest. Such interactions, till date, are not
properly semantically characterized. A poor shared memory
interaction leading to a data-race may eventually cause a
communication deadlock. Such scenarios will not only hard
to debug but equally hard to reproduce.

REFERENCES

[1] “Message Passing Forum.” [Online]. Available:
http://www.mpi-forum.org/docs/

[2] “Multicore Association,” http://www.muticore-
association.com.

[3] B. Krammer, K. Bidmon, M. Mller, and M. Resch, “Marmot:
An mpi analysis and checking tool,” in Parallel Computing -
Software Technology, Algorithms, Architectures and Applica-
tions, ser. Advances in Parallel Computing, F. P. G.R. Joubert,
W.E. Nagel and W. Walter, Eds. North-Holland, 2004,
vol. 13, pp. 493 – 500.

[4] “TotalView Concurrency Tool.” [Online]. Available:
http://www.totalviewtech.com

[5] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R.
de Supinski, “Scalatrace: Scalable compression and replay
of communication traces for high-performance computing,”
J. Parallel Distrib. Comput., vol. 69, pp. 696–710, August
2009.

[6] R. Vuduc, M. Schulz, D. Quinlan, B. de Supinski, and
A. Sæbjørnsen, “Improving distributed memory applications
testing by message perturbation,” in PADTAD ’06: Proceeding
of the 2006 Workshop on Parallel and Distributed Systems:
Testing and Debugging. ACM, 2006, pp. 27–36.

[7] S. F. Siegel and G. S. Avrunin, “Verification of mpi-based
software for scientific computation,” in Model Checking Soft-
ware: 11th International SPIN Workshop. Springer-Verlag,
2004, pp. 286–303.

[8] S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby, “Dy-
namic verification of MPI programs with reductions in pres-
ence of split operations and relaxed orderings,” in Computer
Aided Verification (CAV 2008), 2008, pp. 66–79.

[9] A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M.
Kirby, and R. Thakur, “Formal verification of practical
mpi programs,” in Proceedings of the 14th ACM SIGPLAN
PPoPP, ser. PPoPP. New York, NY, USA: ACM, 2009, pp.
261–270.

[10] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R.
de Supinski, M. Schulz, and G. Bronevetsky, “A scalable and
distributed dynamic formal verifier for mpi programs,” SC
Conference, vol. 0, pp. 1–10, 2010.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing. MIT Press, 2000.

[12] G. S. Avrunin, S. F. Siegel, and A. R. Siegel, “Finite-state
verification for high performance computing,” in Proceedings
of the second international workshop on Software engineering
for high performance computing system applications, ser. SE-
HPCS. New York, NY, USA: ACM, 2005, pp. 68–72.

[13] R. Rabenseifner, “Automatic profiling of mpi applications
with hardware performance counters,” in Proceedings of the
6th EuroPVM/MPI. London, UK: Springer-Verlag, 1999, pp.
35–42.

[14] S. Sharma, S. S. Vakkalanka, G. Gopalakrishnan, R. M.
Kirby, R. Thakur, and W. Gropp, “A formal approach to
detect functionally irrelevant barriers in mpi programs,” in
PVM/MPI, 2008, pp. 265–273.

[15] S. Sharma, “FIBResults,” 2008. [Online]. Available:
http://www.cs.utah.edu/ svs/FIB results/

[16] J. S. Vetter and B. R. de Supinski, “Dynamic software testing
of mpi applications with umpire,” in Proceedings of the
2000 ACM/IEEE conference on Supercomputing (CDROM),
ser. Supercomputing ’00. Washington, DC, USA: IEEE
Computer Society, 2000.

[17] S. Sharma and G. Gopalakrishnan, “Scalable analysis for
deadlock detection in mpi programs,” Submitted to ICS, 2011.

[18] S. Sharma, G. Gopalakrishnan, E. Mercer, and J. Holt, “Mcc:
A runtime verification tool for mcapi user applications,” in
FMCAD, 2009, pp. 41–44.

[19] G. Bronevetsky, “Communication-sensitive static dataflow for
parallel message passing applications,” in CGO, 2009, pp. 1–
12.


