Dynamic Verification of Multicore Communication
Applications in MCAPI

Subodh Sharma Ganesh Gopalakrishnan Eric Mercer
School of Computing School of Computing Computer Science Department
University of Utah University of Utah Brigham Young University
Salt Lake City, UT 84112 Salt Lake City, UT 84112 Provo, UT 84602.
svs@cs.utah.edu ganesh@cs.utah.edu eric.mercer@byu.edu
www.cs.utah.edu/"svs www.cs.utah.edu/"ganesh http://faculty.cs.byu.edu/"egm

Abstract—We present a dynamic direct code verification tool methods that were originally pioneered in Verisoft [4]. Dy-
called MCC (MCAPI Checker) for applications written in namic formal verification is witnessing ever growing presen
the newly proposed Multicore Communications API (MCAPI). i to0|s such as CHESS [9], Java Pathfinder [6], etc. In omler t
MCAPI provides both message passing and threading construs,
making the concurrent programming involved in MCAPI ap- contain the thread interleaving eprosmp we use pgrndéor
plication development a non-trivial challenge. MCC interepts Methods that have been shown to be quite effective in sadtwar
MCAPI calls issued by user applications. Then, using a verifia- verification. Dynamic verification methods differ in the way
tion scheduler, MCC orchestrates a dependency directed régy in which the partial order reduction (POR) method operates
of all relevant thread interleavings. This paper presents e \yinin them. Dynamic verifiers compute more precise ample-
technical challenges in handling MCC'’s non-blocking consticts. ts [12] at i instead of wh ted staticallvaMC
This is the first dynamic model checker for MCAPI applications, sets [12] a run_'me Ins Qa orwnen CPmpU ? staucally! ’
and as such our work provides designers the opportunity to US€S a customized version of dynamic partial order reductio

use a formal design tool in verifying MCAPI applications and (DPOR [5]) that is similar to the partial order with elusive

evaluating MCAPI itself in the formative stages of MCAPI. interleavings (POE) algorithm explained in [11].
Keywords-Dynamic Verification, Software, Partial Order, MCC builds on the strength of past projects namely ISP [8]
Model Checking and Inspect [7]. However, there are subtle differences betw
MCC, ISP, and Inspect. ISP is a purely MPI based verifier and
. INTRODUCTION Inspect is purely a shared memory thread program verifier.

MCC, on the other hand, accommodates Pthread create and

It has been observed that the combined use of threadlnﬁ1 calls as well as message passing based MCAPI calls

and message passing is necessary in order to create effi unrtthermore, MCC differs from ISP in the manner in which

multicore applications. This will require the standardiza non-determinism is handled in the input programs. ISP uses

of an API for inter-core communication and synchroniza; : ; . o
. . L .~dynamic rewrite mechanism to force a deterministic match
tion. MCAPI [1] is one such effort which is under active . . S .
X - at runtime. MCAPI provides only non-deterministic receive
development by a group of 25 leading companies in the . o .)
; . o . calls, therefore, in the absence of specific receives thardim
embedded system’s market. Unlike large existing APIs liké ™ .
.réwrite mechanism cannot work for MCC. We have extended

MPI [2] which target high-end compute clusters, MCAPI is K di 31 b ina “get/ ;
designed keeping in mind the very specific needs and gogfjs(r:i wc_>rt prﬁsente |nt_[1]I y how Elljpﬁ)frtmg g? l;rgate
of embedded software/hardware system developers. MCAd L E)‘\c/)vlgit”cgaﬁ’ 'T'?\re]nﬁg\llglr;- e;:s tﬂgn\;vocr)lf I?gsgg'?esdrin this
is aimed at programmers writing applications for embed- lies | ih y p d tp st wch at
ded distributed systems employing loosely coupled cor aper 1ies in e way we eniorce a deterministic match &

In particular, MCAPI is well suited for systems that haveﬁe runtime. We insert an implicit wait call in the instruii

. . sgeam after a send and non-blocking receive pair has been
much smaller memory footprints and are much more orienté

towards reactive behaviors than computational. This pa jyen a go-ahead by the MCC scheduler. More details can be

.) . ; e ound in Section IlI-D.

describes the first direct code dynamic verification tool fo(Eontribution' The contributions of this paper are two fold
MCAPI applications called MCC (MCA.PI Checker). It take irst, we have added support for non-blocking constructs to
as input a C code and verifies it directly as opposed our verifier, and second, we have devised a novel way to
classical model checking tools which need a high level abstr ' L] : .
model of the program (like SPIN [14] etc.). The process (%nf.orce a deterministic matF:h at .the runtime by forcm.g a

. . wait to acknowledge completion of issued calls to the ruatim
constructing models is known to be cumbersome and b

prone. Therefore we resort to dynamic direct code verificati reby avoiding the poss_lblllty of a commun|cat|(?n race.
The rest of the paper is organized as follows: Section Il

This work was funded collaboratively by NSF CCF 0903408881 and begm; with an informal overview of M.CAPI' SeCt'on_ il
SRC contracts 2009-TJ-1993/1994 describes the need to have a systematic and exhaustive ex-

. .. 1:#define NUM THREADS 3
ploration of MCAPI programs followed by MCC details in,. #dgf: 23 PORT_NUM 1

Section IlI-A and Section III-B. Section 11I-C explains the

working of the MCC scheduler with the help of an exampl%f void run_thread (void «t) {

and Section IlI-D explains the scheduler pseudo-codevatb

by results and conclusions in Section V. 5:

6:

Il. OVERVIEW OF MCAPI &

The MCAPI effort traces its heritage to MPIl and Sockei:
communication libraries; however it differs from both with

respect to the application domain it targets and the fung-
tionality it offers. MCAPI is less flexible than MPI (i.e.,

thread_start();

ﬁcapi _initialize(tid, &ersion, &tatus);
if (tid==2) {
recv_endpt =

pntapi _create_endpoi nt (PORT_NUM &st at us) ;

pnctapi _nmsg_recv(recv_endpt, nsg,
BUFF_SI ZE, &r ecv_si ze,
&stat us);

pntapi _nmsg_recv(recv_endpt, nsg
BUFF_SI ZE, &recv_si ze,

offers fewer functionalities as compared to MPI). Itis anlAP, &status);

e . . L . : el se
spemﬂcatlpn .for the inter-core communication in a loosely;. sénd_endét = ncapi _creat e_endpoi nt
coupled distributed embedded SoC. (PORT_NUM &st at us) ;
MCAPI defines three communication types viz., connectiod2: " €cv_endpt = ntapi_get_endpoi nt

(2, PORT_NUM &st at us) ;
pnctapi _nsg_send(send_endpt, recv_endpt,

nsg, strlen(nsg),

1, &status);

less datagrams, connection-oriented FIFO packet streaths as.
connection-oriented FIFO scalar streams. MCAPI communi-
cation is performed by nodes which are abstract entities thg.
could either be a process, a thread, a hardware acceleratpr
or a processor core. Furthermore, nodes communicate with ...
each other via endpoints that are the communication termf ;hread—e”d()?
nation points. Endpoints are defined as a tupl€/rafde id,

port id) pair. Each node can support multiple endpoints ard:int min () {
every endpoint in the system is assigned a globally uniqgg_
identifier. Since MCC currently supports only connectiesd 71g:
MCAPI constructs, we will therefore restrict the discussio20:
in this paper to only those API calls. The connection-less
communication type of MCAPI is similar to MPI in that therey;.
is not static routing of messages. The API provides blockirzg:
and non-blocking variants of a send, receive, wait and bt cgif
to check the successful completion of non-blocking requesjs.
An example code illustrating the usage of MCAPI calls in a
C compilable code is shown in Figure 1.

}
pncapi _finalize(&status);

mai n_thread_start();

for(t=0; t<NUM THREADS; t++){
rc = ncapi _thread_create(& hreads[t],
NULL, run_thread,
(void *)& hread_data_array[t]);

}
for (t = 0; t < NUM_THREADS; t++) {
ncapi _thread_join(threads[t], NULL);

mai n_t hread_end();

II1. V ERIFICATION OF MCAPI| USERAPPLICATIONS Fig. 1. MCAPI example C program

Consider the example shown in Figure 2. Note that MCAPI
connection-less receive calls are non-deterministic leea
each receive could potentially be matched at runtime with L
either send. Assume that the correctness of the program 2 TS mateh=set2” "7 Ao v(ep2)
depends on whether TO's send or T1's send matches T2's o
first receive. While the runtime will always explore only one
of the two possible execution scenarios, we must explore
both the scenarios to guarantee program correctness. This
simple example illustrates the futility of ad-hoc testin§ o
concurrent programs in general. One popular approach foas successfully issued MCARNITIALIZE. It is an error
bug detection is to perturb schedules by inducing randam issue a communication call after a node has performed
sleep statements. Such a method does help manifest prigvioas MCAPLFINALIZE. We have identified a list of safety
untried schedules, however, it certainly does not provige aproperties that are important to ensure a correct and safefus
guarantee of coveringll relevantschedules. Such a guarantethe API. For instance, invoking a communication call withou
is furnished by the MCC scheduler. creating valid endpoints or accessing the data buffer qubiss

_ a non-blocking call) before the corresponding wait operati
A. MCC Overview is issued are few of the conditions that violate the corrssn

MCC is based on the current reference implementatiafi an MCAPI program. We have begun a list of default usage
of MCAPI provided by the MCA. The reference imple-properties [10] which we hope to incorporate in MCC in the
mentation uses Pthreads and a thread describes the notiear future. Figure 3 describes an high level work-flow of the
of a node. Communication is performed only after a noddCC tool. MCC has three components. The first component

TO T1

T2

send(epl, ep2) send(ep3, ep2) recv(ep2)

match-set 1

Fig. 2. MCAPI Receive Nondeterminism

instruments an input MCAPI C user program at compile tim@OR that is considerably different from the one taken in
As a part of the instrumentation process all the MCAPI calldassical shared memory in-order execution languages. As
along with the Pthread create/join calls are prefixed with anentioned before, MCC adopts POE that is well suited for
alphabet “p”. These instrumented calls serve as wrappéheto message passing based out-of-order execution semaikgcs li
actual MCAPI calls. Additionally, the thread function bedi that of MCAPI. The MCC scheduler also accommodates re-
are enveloped within the callhread start and thread end ceive non-determinism by delaying (dynamically re-ordgyi

and the main thread is instrumented withmain start and the processing of receive calls until all sends that can po-
main_end call. Figure 1 shows a snippet of instrumented @ntially match the receives are dynamically discoverexthE
code that has the same communication pattern as depictedh send-receive match is explored in separate runs of the
in Figure 4. Note that thread function body is instrumentgatogram (these matches form theple-sets [12]

with a thread start (line 4) and athread end (line 16) call.

——— Intra happens-before

Thethread endcall notifies the scheduler that thread count, a s Non Blocking send
piece of information noted by the scheduler before proogssi o ik T i Non Blocking Receive
any instrumented call, should be decremented by one. The iset1 e2) s(e3, e2) ir(e2, r2) w(r) Wait on request handle r
thread count helps the scheduler to determine when alldhreg " match-seiz /4)
have blocked. Thehread start call acts as a barrier (global —~ **"*? \‘\n——"'C"(ez‘ ?

match-set 1 w(r3)

fence) operation. In other words, all the threads (except th
main thread) have to issue thbread start call before any
thread can proceed with its execution. The main thread & als
instrumented with anain thread startand amain thread end
call (lines 18, 25). These calls notify the scheduler of tiaets L
and end of the verification process. Additionally, the triadial B. MCC preliminaries
Pthread create and join calls are also instrumented. Tlsemea We describe the terminology that we use in forthcoming
for create/join call instrumentation will become apparemt sections of the paper which will help in elucidating the
section I1I-D. All the MCAPI related calls are replaced withinternals of the MCC scheduler later in Section IlI-D.
the wrapper calls that are defined in the profiler component®gtch-sets A match-set is a collection of operations that are
MCC. signaled to the runtime together. For instance, a matckéng s
The second component of MCC is the profiler that ha&nd areceive call forms a match-set. These match-setssmn al
function definitions of the instrumented calls. The profilg?® Singleton sets, for example, a wait call whose correspgnd
functions perform the necessary book-keeping and commufn-blocking call has drained/filled the intended message
cate the information collected to the scheduler. The famcti buffer. The match-sets for the example shown in Figure 2 are
block until they receive a signal to continue with the examut (send(epl, ep2), recu(ep2)), (send(ep3, ep2),recv(ep2)).

from the scheduler. The profiler wrapper functions evehua@Mple-set Ample set is the collection of match-set entries
issue the actual MCAPI calls to the runtime. computed at each decision point. A decision point is where

The third component of MCC is the scheduler that umt_he status_of all the _threads is blocked and thg scheduler

mately decides which calls should be issued to the runtii@S t© decide on moving a match-set to the runtime thereby
and subsequently signals the blocked threads to unblock locking the participating threads.

execute those calls. replay: The MCC scheduler remembers all the ample-sets

computed in the first run of the program. It also notes all the

s AR match-set entries that were explored at each decision.point

re2)

Fig. 4. Example with Non-blocking requests

& McC
r ! MCC re-runs the program from the initial state and explores
a different execution scenario by selecting th_e _untnedarho
of match-set from the ample-set at every decision point.
‘ Intra happens-before ordering: Intra happens-before (Intra-
gj:::::i?lfsd Executabld. | Signals HB) ordering is a partial order that is established among the

| | operations of a thread. All blocking operations of a thregd a
i, Sall to actual MCAPI function Intra-HB ordered. The Intra-HB rules for non-blocking send
non-blocking receive, and wait are the following:

« Two non-blocking sends are happens-before ordered in
Fig. 3. MCC workflow program order if they target the same destination endpoint
and are issued from the same source endpoint.

The scheduler explores all the independent thread steps in a TWo non-blocking receives are happens-before ordered in
single non-commutative canonical order while commutiig al ~ Program order if they have the same receiving endpoint.
dependent co-enabled thread steps resulting in the etiplora + A non-blocking send and its wait are happens-before or-
of a reduced state space that is a valid partial order resuofi dered in program order. Similarly, a non-blocking receive
the complete state space. However, MCC executes a dynamic and its wait are happens-before ordered in program order.

C. MCC Scheduler explanation through an example of the instrumented program issues thread create callshwhic

The MCC scheduler unlike the ISP scheduler does nwhen signaled to go-ahead by the scheduler, create threads
perform dynamic re-writing because MCAPI does not proto, Tl’. gnd T2. Note that the main thread blocks at the first
vide specific source point receives; meaning that one canffgad join call. Threads T0, T1, and T2 are all blocked at
designate where one would like to receive from. The schedufBeir respectivehread start calls.
is able to perform dynamic re-ordering of calls by first The reason to have threadstart call is explained in
discovering all pending calls and then issuing matcheds cafpection 111-D.
sequentially to the run time and inserting waits when nedéaled The scheduler unblocks the threads TO, T1, and T2 after
non-blocking semantics. While an MCAPI node (i.e. a threa@icertaining a count of the total number of threads alive in
w.r.t. the reference implementation) would issue the dalls the system. The threads continue to run and issue calls until
program order, the MCC scheduler can permute the ordbey have hit their fence operations (blocking calls). Asth
of these calls without introducing any new behaviors in theoint the scheduler has seen the following operations: (i)
program. is(el, e2, rl)ands(el, e2)from TO; (i) s(e3, e2)from T1;

Consider the example shown in Figure 5 where the MCand (iii) ir(e2, r2), ir(e2, r3) and w(r3) from T2. The list
scheduler re-orders the calls. Threads TO, T1 and T2 akenabled transitions i§s(el,e2,r1), s(e3,e2), ir(e2,r2)).
blocked at thew(r2), s(e2, el)and r(e3) calls respectively. The scheduler has come across a decision point and sub-
The enabled transitions andel, rl), is(el, e3, r2), s(e2, el)sequently forms match-sets from the list of enabled transi-
andr(e3). The match-sets formed by the scheduler at this poitiens. From Figure 6, it is apparent that the scheduler picks
are {(is(el,e3,72),7(e3))} and {(ir(el,71),s(e2,el))}. As (is(el,e2,rl), ir(e2,72)) and signals the threads TO and T2
the wait call forir(el, r1) is not yet seen, thi(el,rl) call is to proceed. At the next decision point (when all threads have

not obliged to finish beforés(el, e3, r2)call. hit their fence operations), the enabled transitions gre(é1,
]] e2) from TO; (i) s(e3, e2)from T1; and (iii) ir(e2, r3) and
TO: ir(el, rl); is(el, e3, r2); Wr2); w(r3) from T2. The scheduler then forms the match-sets and
Tl. s(e2, el); decides to give the go-ahead to TE&3, e2)call and T2’s
T2: r(e3); s(e3, el); ir(e2, r3) call. Note that issuing the(e3, e2)call into the
runtime beforeir(e2, r2) call has completed can cause the
Fig. 5. Re-ordering Example sendss(e3, e2pandis(el, e2, rlYo race in the MCAPI runtime.

N hat signali h h . 5 This can potentially break the correctness of the verificati
ote that S|gb|na|ng the matcll-si(_zsh(gl,es,rh),r(e3)>}_ process of the scheduler, wherein the scheduler decided one
to runtime enables the(e3, elyall which is another potentia match-set to manifest at runtime however, the runtime auste

serlder to the calir(e1,r1) Hence_, signaling the ma‘tCh'SEEicked another match-set. To make sure a deterministictmatc
{<Z_r(el’rl)’ s(e2,e1))} to the runtime .before the rr?gtch_-se ccurs at the runtime, the scheduler identifies a race amd spi
{{is(el,e3,2),r(e3))} would lead to incorrect verification |55 il their(e2, r3) call completes before signaling a go-
results. Noting this fact, the scheduler should signal a 99qe5 1o the next match-set. The box in the timing diagram
ahead tas(el, 3, r2)call first thus permuting the issue ordeg, Figure 6 represents this spin-loop. The next match-set is

diffe_rent from the program order. . . signaled in to the runtime once the requé&$e2, r3) has
Figure 4 illustrates a program with non-blocking requeSt§Ompleted

Intra—.HB or.denngs are also shown .that respect the r.U|eSThe main thread unblocks following the completion of the
mentioned in the section IlI-B. Some important observation .
:) thread endcalls and the program runs to completion.
regarding the example are:
o Thread TO’s non-blocking and blocking sends have the .
same source and destination endpoints. Thus, they r'e'vICC Scheduler Algorithm
Intra-HB ordered. Since the first non-blocking send is Figure 7 in Section IlI-D explains the working of the sched-
obliged to finish before the second send, it would nafler. The MCC scheduler works under certain assumptions.
change the semantics of the program if we throw in a wait assumes that all threads of the system are created at the
call corresponding to the first call. Hence, the operatiorgitset of the program. The MCC scheduler must know the
can be alternatively viewed as(el, e2, rl); w(rl); s(el, total thread count in the system to determine when all treead
e2); have blocked. As such, MCC count threads as they are created
« Using a similar argument as before, the operations by the main thread, and blocks them on their thread-start
thread T2 can be alternatively viewedigg2, r2); w(r2); calls until the main thread either invokes an MCAPI call
ir(e2, r3); w(r3);. or a thread join call. At that point, MCC assumes the total
Figure 6 illustrates an interleaving scenario as a time-limumber of threads to be those already created and starts
based sequence of message interactions between the sahedilithe created threads running. After ascertaining theatir
and the threads of an MCAPI user program (from Figure 4ount, the scheduler liberates all the blocked threads (lif)
The user program is branched off as a separate thread uraled starts receiving transitions from all runnable threaus
the controlled environment of the scheduler. The main threthe next decision point is hit. Note that if a thread issues a

Showing the go—-aheads for interleaving 1

Scheduler

execvp test

go ahead
(main start)

go ahead
(thread create),

go ahead
(thread create)

go ahead
(thread create)

go ahead
(thread join)

go ahead
(thread starf

go back
(is(r1))

o back
ir(r2))

go back
(ir(r3))

go ahead

(is(r1), ir(r2))
Spin loop

onr2 E

0 ahead

s, ir(r3))

go ahead
w(r3)

go ahead
(thread end

go ahead
(s, r(e2))

(thfS35a

go ahead

go ahead

Thread status active

Thread status blocked

main

/, main start
I

thread create

T2

thread start

ir(e2, r2)

ir(e2, r3)

w(r3)

i
/,'/ thread end

thread end

Fig. 6.

Interactions of the scheduler with the example fragufe 4

Generatelnterleaving() {
while (1) { // Computes the total number of threads alive
t; = receive transition ();
if (¢; is thread creatg {
num threads++;
signal go-ahead to threaaf(t;);

if (t; is thread join || ¢; is MCAPI communication call by thread
“main”) {
signal go-ahead to thread i;
break;

)
if (¢; is thread start) {
update the status of thread i to blocked;

}
}HI while (1) ends here

count= num_threads;
signal go-ahead to all the blocked threads;

while (count) { // till no more threads are alive
for each (runnable thread i){
t; = receive transition from thread i;
update transitiodist of thread of (¢;) in the Scurr;
if (¢; is of blocking typg {
update the status of thread i to blocked;

)

if (¢; is of typethread end {
count --;

}

/I All threads are blocked here
while (no thread is runnablej
find_matchset ();
unblock the threads owning transitions in the above matc
set;

}HI while (count) ends here

. check for_runtime_race() {

if (any t; € current match-set races with non-blocking call from
prev_match-set{
while (non-blocking call is completed);
}

}

o}
. find_matchset) {

Store the computed match-sets in ampé of Scyr;
if (ample_set is not empty)
for each (¢; in head element of the ampldist) {
checkfor_runtime race();
give a go-ahead to threaaf (i);

remove heactlement from ampleset;
copy the ampleset in Snext;
return;

flag that a deadlock found;

Fig. 7. MCC scheduler algorithm

_ match-set (lines 29-32). A match-set consists of eithema-se
thread endcall, the thread count of the system is decrementggceive call pair, or a single entry comprising a wait call.

(lines 18-28).

Once a decision point is hit, the scheduler then computkgra-HB relationship that is maintained for each statehef t
the match-sets from a list of enabled transitions. It théecse scheduler. The priority order for evaluating these matts-s
one match-set and liberates the participating threadsan tiis the following: (i) enabled wait call (ii) and then the send

The enabled transitions are computed with the help of the

receive match-set. in unison with the MCAPI non-determinism. We acknowledge
The MCC scheduler also handlget endpointand cre- Jim Holt from Freescale for his help on this work.

ate endpointcalls. When a thread issuescaeate endpoint

call, the scheduler looks to see if any blocked thread (on

get endpointcall) was waiting for it. If so, thereate endpoint [1] http://www.multicore-association.org.

call and the blockedyet endpointcall are both signaled to [2] http:/www.mcs.anl.gov/mpi/ .

) 3] _http://www.lInl.gov/computing/tutorials/pthreatds
go-ahead. If that .'S .not the Cgse, then the scheduler stok Spatrice Godefroid. VeriSoft: A Tool for the Automatic Alysis
the created endpoint in an auxiliary table. When the scleedul * of Concurrent Reactive Software. CAV 1997, 476-479.
encounters get endpointcall then it first looks up the table of [5] Cormac Flanagan and Patrice Godefroid. Dynamic paoiidér
created endpoints. It blocks the thread if the sought emdpoi reduction for model checking softwar®OPL, 110-121, 2005.

; ; ; ‘o i ; [6] Java Pathfinder. http://javapathfinder.sourceforeté.n
Sggz:egrfgtsg;aﬁ;gzrws&get_endpOIntcaII 's immediately [7]1 Yu Yang, Xiofang Chen, Ganesh Gopalakrishnan, R.M. Kirb

o - Distributed Dynamic Pratial Order Reduction Based Veriiaa
Every decision point advances the state of the scheduler. SPIN 2007, 58-75.

The match-sets for a state under exploration are stored irfi8h Sarvani Vakkalanka, Subodh V. Sharma, Ganesh Gopaletain,
separate data structuraniple-set Every state has an ample- and Robert M. Kirby. ISP: A tool for model checking MPI

- s . : programs. PPoPP 2008. 285-286.
set associated with it. One entry is selected from this araplie M. Musuvathi and S. Qadeer. lterative Context Boundiog f

9
for the go-ahead. Subsequently, the match-set entry trsat LA Systematic Testing of Multithreaded Programs. PLDI 200%6-4
been recently liberated is removed from the ample-set. The 455,

updated ample-set is then copied to the next state. Note tH& www.cs.utah.edu/formaterification/mediawiki/index.php/

only the first interleaving builds the per-state ample-3éie MCAPI/

. . Sarvani Vakkalanka, Ganesh Gopalakrishnan, and Rd{er
scheduler declares a deadlock in the code if at a state H@Kirby. Dynamic verification of MPI programs with reductions

ample-set is found to be empty while there are still runnable presence of split operations and relaxed orderings. CAB200
threads in the system (lines 41-52). 66-79.

A safety check is performed before the participating thseaﬂl2]M||51-_ '\Ffl)- Cla”;eo’o?)' Grumberg, and D. A. Peledodel Checking
; ; ress, .
e oo 14! Susoh e, Ganesh opelalan, 1 erm
. . Holt. MCC: A runtime verification tool for MCAPI applications

the match-set in the current stat&.{,..) do not race with the accepted in FMCAD 2009.
transitions from the match-set in the previous staig.{,). [14] Gerard J. Holzmann The Model Checker Spin, IEEE Trans. o
In the case when a race is found then the scheduler spin- Software Engineering, Vol. 23, No. 5, May 1997, pp. 279-295.
loops until the racing transition from,,., is completed by
repeatedly testing the request handle of the racing tiansit
Only after the completion of the racing transition is the
current match-set processed (lines 35-40). Later if a wait
call is observed by the scheduler for the completed racing
transition, it is still issued to the runtime, however, itllwi
return immediately.

The proceduré&eneratelnterleaving called in a loop until
there are no more replays to be performed. The decision
whether to perform a replay is made by inspecting the ample-
set of the visited states in the stack. If for each state thglexm
set is found to be empty then the scheduler has explored all
the relevant interleavings.

REFERENCES

IV. RESULTS AND CONCLUDING REMARKS

We have developed the first dynamic verification engine
for MCAPI user applications that currently handles blogkin
and non-blocking connection-less communication conttruc
of the MCAPI reference implementation. Since no publicly
available benchmark using MCAPI is currently available, we
tested MCC successfully on small test examples constructed
by ourselves. For instance, the example program from Figure
was verified in 3 interleavings in a fraction of a second. We
are currently working to extend MCC to support the full set
of MCAPI calls. Future works involves exploring solutiors t
verify programs that have subtle bugs, for instance, dates

