
Dynamic Verification of Multicore Communication
Applications in MCAPI

Subodh Sharma
School of Computing

University of Utah
Salt Lake City, UT 84112

svs@cs.utah.edu
www.cs.utah.edu/˜svs

Ganesh Gopalakrishnan
School of Computing

University of Utah
Salt Lake City, UT 84112

ganesh@cs.utah.edu
www.cs.utah.edu/˜ganesh

Eric Mercer
Computer Science Department

Brigham Young University
Provo, UT 84602.

eric.mercer@byu.edu
http://faculty.cs.byu.edu/˜egm

Abstract—We present a dynamic direct code verification tool
called MCC (MCAPI Checker) for applications written in
the newly proposed Multicore Communications API (MCAPI).
MCAPI provides both message passing and threading constructs,
making the concurrent programming involved in MCAPI ap-
plication development a non-trivial challenge. MCC intercepts
MCAPI calls issued by user applications. Then, using a verifica-
tion scheduler, MCC orchestrates a dependency directed replay
of all relevant thread interleavings. This paper presents the
technical challenges in handling MCC’s non-blocking constructs.
This is the first dynamic model checker for MCAPI applications,
and as such our work provides designers the opportunity to
use a formal design tool in verifying MCAPI applications and
evaluating MCAPI itself in the formative stages of MCAPI.

Keywords-Dynamic Verification, Software, Partial Order,
Model Checking

I. I NTRODUCTION

It has been observed that the combined use of threading
and message passing is necessary in order to create efficient
multicore applications. This will require the standardization
of an API for inter-core communication and synchroniza-
tion. MCAPI [1] is one such effort which is under active
development by a group of 25 leading companies in the
embedded system’s market. Unlike large existing APIs like
MPI [2] which target high-end compute clusters, MCAPI is
designed keeping in mind the very specific needs and goals
of embedded software/hardware system developers. MCAPI
is aimed at programmers writing applications for embed-
ded distributed systems employing loosely coupled cores.
In particular, MCAPI is well suited for systems that have
much smaller memory footprints and are much more oriented
towards reactive behaviors than computational. This paper
describes the first direct code dynamic verification tool for
MCAPI applications called MCC (MCAPI Checker). It takes
as input a C code and verifies it directly as opposed to
classical model checking tools which need a high level abstract
model of the program (like SPIN [14] etc.). The process of
constructing models is known to be cumbersome and bug
prone. Therefore we resort to dynamic direct code verification

This work was funded collaboratively by NSF CCF 0903408/0903491 and
SRC contracts 2009-TJ-1993/1994

methods that were originally pioneered in Verisoft [4]. Dy-
namic formal verification is witnessing ever growing presence
in tools such as CHESS [9], Java Pathfinder [6], etc. In order to
contain the thread interleaving explosion we use partial order
methods that have been shown to be quite effective in software
verification. Dynamic verification methods differ in the way
in which the partial order reduction (POR) method operates
within them. Dynamic verifiers compute more precise ample-
sets [12] at runtime instead of when computed statically. MCC
uses a customized version of dynamic partial order reduction
(DPOR [5]) that is similar to the partial order with elusive
interleavings (POE) algorithm explained in [11].

MCC builds on the strength of past projects namely ISP [8]
and Inspect [7]. However, there are subtle differences between
MCC, ISP, and Inspect. ISP is a purely MPI based verifier and
Inspect is purely a shared memory thread program verifier.
MCC, on the other hand, accommodates Pthread create and
join calls as well as message passing based MCAPI calls.
Furthermore, MCC differs from ISP in the manner in which
non-determinism is handled in the input programs. ISP uses
dynamic rewrite mechanism to force a deterministic match
at runtime. MCAPI provides only non-deterministic receive
calls, therefore, in the absence of specific receives the dynamic
rewrite mechanism cannot work for MCC. We have extended
our work presented in [13] by now supporting “get/create”
endpoint calls, connection-less non-blocking constructsand
the “wait” call. The novelty of the work presented in this
paper lies in the way we enforce a deterministic match at
the runtime. We insert an implicit wait call in the instruction
stream after a send and non-blocking receive pair has been
given a go-ahead by the MCC scheduler. More details can be
found in Section III-D.
Contribution : The contributions of this paper are two fold.
First, we have added support for non-blocking constructs to
our verifier, and second, we have devised a novel way to
enforce a deterministic match at the runtime by forcing a
wait to acknowledge completion of issued calls to the runtime;
thereby avoiding the possibility of a communication race.

The rest of the paper is organized as follows: Section II
begins with an informal overview of MCAPI. Section III
describes the need to have a systematic and exhaustive ex-

ploration of MCAPI programs followed by MCC details in
Section III-A and Section III-B. Section III-C explains the
working of the MCC scheduler with the help of an example
and Section III-D explains the scheduler pseudo-code followed
by results and conclusions in Section IV.

II. OVERVIEW OF MCAPI

The MCAPI effort traces its heritage to MPI and Socket
communication libraries; however it differs from both with
respect to the application domain it targets and the func-
tionality it offers. MCAPI is less flexible than MPI (i.e.,
offers fewer functionalities as compared to MPI). It is an API
specification for the inter-core communication in a loosely
coupled distributed embedded SoC.

MCAPI defines three communication types viz., connection-
less datagrams, connection-oriented FIFO packet streams and
connection-oriented FIFO scalar streams. MCAPI communi-
cation is performed by nodes which are abstract entities that
could either be a process, a thread, a hardware accelerator
or a processor core. Furthermore, nodes communicate with
each other via endpoints that are the communication termi-
nation points. Endpoints are defined as a tuple of〈node id,
port id〉 pair. Each node can support multiple endpoints and
every endpoint in the system is assigned a globally unique
identifier. Since MCC currently supports only connection-less
MCAPI constructs, we will therefore restrict the discussion
in this paper to only those API calls. The connection-less
communication type of MCAPI is similar to MPI in that there
is not static routing of messages. The API provides blocking
and non-blocking variants of a send, receive, wait and test call
to check the successful completion of non-blocking requests.
An example code illustrating the usage of MCAPI calls in a
C compilable code is shown in Figure 1.

III. V ERIFICATION OF MCAPI USERAPPLICATIONS

Consider the example shown in Figure 2. Note that MCAPI
connection-less receive calls are non-deterministic because
each receive could potentially be matched at runtime with
either send. Assume that the correctness of the program
depends on whether T0’s send or T1’s send matches T2’s
first receive. While the runtime will always explore only one
of the two possible execution scenarios, we must explore
both the scenarios to guarantee program correctness. This
simple example illustrates the futility of ad-hoc testing of
concurrent programs in general. One popular approach for
bug detection is to perturb schedules by inducing random
sleep statements. Such a method does help manifest previously
untried schedules, however, it certainly does not provide any
guarantee of coveringall relevantschedules. Such a guarantee
is furnished by the MCC scheduler.

A. MCC Overview

MCC is based on the current reference implementation
of MCAPI provided by the MCA. The reference imple-
mentation uses Pthreads and a thread describes the notion
of a node. Communication is performed only after a node

1:#define NUM_THREADS 3
2:#define PORT_NUM 1

3:void* run_thread (void *t) {
4: thread_start();

...
5: mcapi_initialize(tid,&version,&status);
6: if (tid == 2) {
7: recv_endpt =

pmcapi_create_endpoint (PORT_NUM,&status);
8: pmcapi_msg_recv(recv_endpt,msg,

BUFF_SIZE,&recv_size,
&status);

9: pmcapi_msg_recv(recv_endpt,msg
BUFF_SIZE, &recv_size,
&status);

10: } else {
11: send_endpt = mcapi_create_endpoint

(PORT_NUM,&status);
12: recv_endpt = mcapi_get_endpoint

(2,PORT_NUM,&status);
13: pmcapi_msg_send(send_endpt,recv_endpt,

msg,strlen(msg),
1,&status);

14: }
15: pmcapi_finalize(&status);

...
16: thread_end();

}

17:int main () {
...

18: main_thread_start();
19: for(t=0; t<NUM_THREADS; t++){
20: rc = mcapi_thread_create(&threads[t],

NULL, run_thread,
(void *)&thread_data_array[t]);

21: }
22: for (t = 0; t < NUM_THREADS; t++) {
23: mcapi_thread_join(threads[t],NULL);
24: }
25: main_thread_end();

...
}

Fig. 1. MCAPI example C program

1:

2:

T0 T1 T2

send(ep1, ep2) send(ep3, ep2)

recv(ep2)

recv(ep2)

match−set 1

match−set 2

Fig. 2. MCAPI Receive Nondeterminism

has successfully issued MCAPIINITIALIZE. It is an error
to issue a communication call after a node has performed
an MCAPI FINALIZE. We have identified a list of safety
properties that are important to ensure a correct and safe use of
the API. For instance, invoking a communication call without
creating valid endpoints or accessing the data buffer (passed to
a non-blocking call) before the corresponding wait operation
is issued are few of the conditions that violate the correctness
of an MCAPI program. We have begun a list of default usage
properties [10] which we hope to incorporate in MCC in the
near future. Figure 3 describes an high level work-flow of the
MCC tool. MCC has three components. The first component

instruments an input MCAPI C user program at compile time.
As a part of the instrumentation process all the MCAPI calls
along with the Pthread create/join calls are prefixed with an
alphabet “p”. These instrumented calls serve as wrappers tothe
actual MCAPI calls. Additionally, the thread function bodies
are enveloped within the callsthread start and thread end
and the main thread is instrumented with amain start and
main end call. Figure 1 shows a snippet of instrumented C
code that has the same communication pattern as depicted
in Figure 4. Note that thread function body is instrumented
with a thread start (line 4) and athread end (line 16) call.
The thread endcall notifies the scheduler that thread count, a
piece of information noted by the scheduler before processing
any instrumented call, should be decremented by one. The
thread count helps the scheduler to determine when all threads
have blocked. Thethread start call acts as a barrier (global
fence) operation. In other words, all the threads (except the
main thread) have to issue thethread start call before any
thread can proceed with its execution. The main thread is also
instrumented with amain thread startand amain thread end
call (lines 18, 25). These calls notify the scheduler of the start
and end of the verification process. Additionally, the traditional
Pthread create and join calls are also instrumented. The reason
for create/join call instrumentation will become apparentin
section III-D. All the MCAPI related calls are replaced with
the wrapper calls that are defined in the profiler component of
MCC.

The second component of MCC is the profiler that has
function definitions of the instrumented calls. The profiler
functions perform the necessary book-keeping and communi-
cate the information collected to the scheduler. The functions
block until they receive a signal to continue with the execution
from the scheduler. The profiler wrapper functions eventually
issue the actual MCAPI calls to the runtime.

The third component of MCC is the scheduler that ulti-
mately decides which calls should be issued to the runtime
and subsequently signals the blocked threads to unblock and
execute those calls.

Profiler

Executable Scheduler
Instrumented
Source Files

Instrumenter

Signals

Source Files

MCC

MCAPI Runtime

Call to actual MCAPI function

Fig. 3. MCC workflow

The scheduler explores all the independent thread steps in a
single non-commutative canonical order while commuting all
dependent co-enabled thread steps resulting in the exploration
of a reduced state space that is a valid partial order reduction of
the complete state space. However, MCC executes a dynamic

POR that is considerably different from the one taken in
classical shared memory in-order execution languages. As
mentioned before, MCC adopts POE that is well suited for
message passing based out-of-order execution semantics like
that of MCAPI. The MCC scheduler also accommodates re-
ceive non-determinism by delaying (dynamically re-ordering)
the processing of receive calls until all sends that can po-
tentially match the receives are dynamically discovered. Each
such send-receive match is explored in separate runs of the
program (these matches form theample-sets [12]).

is(e1, e2, r1)

s(e1, e2)

s(e3, e2) ir(e2, r2)

ir(e2, r3)
match−set 2

match−set 1 w(r3)

r(e2)

Intra happens−before

T0 T1 T2

is Non Blocking send

ir Non Blocking Receive

w(r) Wait on request handle r

Fig. 4. Example with Non-blocking requests

B. MCC preliminaries

We describe the terminology that we use in forthcoming
sections of the paper which will help in elucidating the
internals of the MCC scheduler later in Section III-D.
match-sets: A match-set is a collection of operations that are
signaled to the runtime together. For instance, a matching send
and a receive call forms a match-set. These match-sets can also
be singleton sets, for example, a wait call whose corresponding
non-blocking call has drained/filled the intended message
buffer. The match-sets for the example shown in Figure 2 are
〈send(ep1, ep2), recv(ep2)〉, 〈send(ep3, ep2), recv(ep2)〉.
ample-set: Ample set is the collection of match-set entries
computed at each decision point. A decision point is where
the status of all the threads is blocked and the scheduler
has to decide on moving a match-set to the runtime thereby
unblocking the participating threads.
replay: The MCC scheduler remembers all the ample-sets
computed in the first run of the program. It also notes all the
match-set entries that were explored at each decision point.
MCC re-runs the program from the initial state and explores
a different execution scenario by selecting the untried choice
of match-set from the ample-set at every decision point.
Intra happens-before ordering: Intra happens-before (Intra-
HB) ordering is a partial order that is established among the
operations of a thread. All blocking operations of a thread are
Intra-HB ordered. The Intra-HB rules for non-blocking send,
non-blocking receive, and wait are the following:

• Two non-blocking sends are happens-before ordered in
program order if they target the same destination endpoint
and are issued from the same source endpoint.

• Two non-blocking receives are happens-before ordered in
program order if they have the same receiving endpoint.

• A non-blocking send and its wait are happens-before or-
dered in program order. Similarly, a non-blocking receive
and its wait are happens-before ordered in program order.

C. MCC Scheduler explanation through an example

The MCC scheduler unlike the ISP scheduler does not
perform dynamic re-writing because MCAPI does not pro-
vide specific source point receives; meaning that one cannot
designate where one would like to receive from. The scheduler
is able to perform dynamic re-ordering of calls by first
discovering all pending calls and then issuing matched calls
sequentially to the run time and inserting waits when neededin
non-blocking semantics. While an MCAPI node (i.e. a thread
w.r.t. the reference implementation) would issue the callsin
program order, the MCC scheduler can permute the order
of these calls without introducing any new behaviors in the
program.

Consider the example shown in Figure 5 where the MCC
scheduler re-orders the calls. Threads T0, T1 and T2 are
blocked at thew(r2), s(e2, e1)and r(e3) calls respectively.
The enabled transitions areir(e1, r1), is(e1, e3, r2), s(e2, e1)
andr(e3). The match-sets formed by the scheduler at this point
are {〈is(e1, e3, r2), r(e3)〉} and{〈ir(e1, r1), s(e2, e1)〉}. As
the wait call forir(e1, r1) is not yet seen, their(e1,r1) call is
not obliged to finish beforeis(e1, e3, r2)call.

T0: ir(e1, r1); is(e1, e3, r2); w(r2);
T1: s(e2, e1);
T2: r(e3); s(e3, e1);

Fig. 5. Re-ordering Example

Note that signaling the match-set{〈is(e1, e3, r2), r(e3)〉}
to runtime enables thes(e3, e1)call which is another potential
sender to the callir(e1,r1). Hence, signaling the match-set
{〈ir(e1, r1), s(e2, e1)〉} to the runtime before the match-set
{〈is(e1, e3, r2), r(e3)〉} would lead to incorrect verification
results. Noting this fact, the scheduler should signal a go-
ahead tois(e1, e3, r2)call first thus permuting the issue order
different from the program order.

Figure 4 illustrates a program with non-blocking requests.
Intra-HB orderings are also shown that respect the rules
mentioned in the section III-B. Some important observations
regarding the example are:

• Thread T0’s non-blocking and blocking sends have the
same source and destination endpoints. Thus, they are
Intra-HB ordered. Since the first non-blocking send is
obliged to finish before the second send, it would not
change the semantics of the program if we throw in a wait
call corresponding to the first call. Hence, the operations
can be alternatively viewed asis(e1, e2, r1); w(r1); s(e1,
e2);

• Using a similar argument as before, the operations in
thread T2 can be alternatively viewed asir(e2, r2); w(r2);
ir(e2, r3); w(r3);.

Figure 6 illustrates an interleaving scenario as a time-line
based sequence of message interactions between the scheduler
and the threads of an MCAPI user program (from Figure 4).
The user program is branched off as a separate thread under
the controlled environment of the scheduler. The main thread

of the instrumented program issues thread create calls which
when signaled to go-ahead by the scheduler, create threads
T0, T1, and T2. Note that the main thread blocks at the first
thread join call. Threads T0, T1, and T2 are all blocked at
their respectivethread start calls.

The reason to have athread start call is explained in
Section III-D.

The scheduler unblocks the threads T0, T1, and T2 after
ascertaining a count of the total number of threads alive in
the system. The threads continue to run and issue calls until
they have hit their fence operations (blocking calls). At this
point the scheduler has seen the following operations: (i)
is(e1, e2, r1)and s(e1, e2)from T0; (ii) s(e3, e2)from T1;
and (iii) ir(e2, r2), ir(e2, r3) and w(r3) from T2. The list
of enabled transitions is〈is(e1, e2, r1), s(e3, e2), ir(e2, r2)〉.
The scheduler has come across a decision point and sub-
sequently forms match-sets from the list of enabled transi-
tions. From Figure 6, it is apparent that the scheduler picks
〈is(e1, e2, r1), ir(e2, r2)〉 and signals the threads T0 and T2
to proceed. At the next decision point (when all threads have
hit their fence operations), the enabled transitions are (i) s(e1,
e2) from T0; (ii) s(e3, e2)from T1; and (iii) ir(e2, r3) and
w(r3) from T2. The scheduler then forms the match-sets and
decides to give the go-ahead to T1’ss(e3, e2)call and T2’s
ir(e2, r3) call. Note that issuing thes(e3, e2)call into the
runtime beforeir(e2, r2) call has completed can cause the
sendss(e3, e2)andis(e1, e2, r1)to race in the MCAPI runtime.
This can potentially break the correctness of the verification
process of the scheduler, wherein the scheduler decided one
match-set to manifest at runtime however, the runtime instead
picked another match-set. To make sure a deterministic match
occurs at the runtime, the scheduler identifies a race and spin-
loops until their(e2, r3) call completes before signaling a go-
ahead to the next match-set. The box in the timing diagram
of Figure 6 represents this spin-loop. The next match-set is
signaled in to the runtime once the requestir(e2, r3) has
completed

The main thread unblocks following the completion of the
thread endcalls and the program runs to completion.

D. MCC Scheduler Algorithm

Figure 7 in Section III-D explains the working of the sched-
uler. The MCC scheduler works under certain assumptions.
It assumes that all threads of the system are created at the
outset of the program. The MCC scheduler must know the
total thread count in the system to determine when all threads
have blocked. As such, MCC count threads as they are created
by the main thread, and blocks them on their thread-start
calls until the main thread either invokes an MCAPI call
or a thread join call. At that point, MCC assumes the total
number of threads to be those already created and starts
all the created threads running. After ascertaining the thread
count, the scheduler liberates all the blocked threads (line 17)
and starts receiving transitions from all runnable threadsuntil
the next decision point is hit. Note that if a thread issues a

Thread status active
Scheduler

execvp test

Showing the go−aheads for interleaving 1

go ahead

go ahead

go ahead
T0

go ahead

T1
T2

main
Thread status blocked

main start

thread create

thread create

thread create

thread start

thread start

thread start

thread join

go back

go back

go back

w(r3)

ir(e2, r3)

ir(e2, r2)

is(e1, e2, r1)

s(e1, e2)

s(e3, e2)

go ahead

go ahead
(thread start)

(main start)

(thread create)

(thread create)

(thread create)

(is(r1))

(ir(r2))

(ir(r3))

(is(r1), ir(r2))

Spin loop
on r2
go ahead

go ahead
(s, ir(r3))

w(r3)
r(e2)thread end

thread end thread end

go ahead

go ahead
(thread join)

go ahead
(thread end)

go ahead
(s, r(e2))

(thread end) thread join

thread join
go ahead

go ahead

Fig. 6. Interactions of the scheduler with the example from Figure 4

thread endcall, the thread count of the system is decremented
(lines 18-28).

Once a decision point is hit, the scheduler then computes
the match-sets from a list of enabled transitions. It then selects
one match-set and liberates the participating threads in that

1: GenerateInterleaving() {
2: while (1) { // Computes the total number of threads alive
3: ti = receive transition ();
4: if (ti is thread create) {
5: num threads++;
6: signal go-ahead to threadof(ti);
7: }
8: if (ti is thread join || ti is MCAPI communication call by thread

“main”) {
9: signal go-ahead to thread i;

10: break;
11: }
12: if (ti is thread start) {
13: update the status of thread i to blocked;
14: }
15: }// while (1) ends here

16: count= num threads;
17: signal go-ahead to all the blocked threads;

18: while (count){ // till no more threads are alive
19: for each (runnable thread i){
20: ti = receive transition from thread i;
21: update transitionlist of thread of (ti) in theScurr;
22: if (ti is of blocking type) {
23: update the status of thread i to blocked;
24: }
25: if (ti is of type thread end) {
26: count --;
27: }
28: }

// All threads are blocked here
29: while (no thread is runnable){
30: find matchset ();
31: unblock the threads owning transitions in the above match-

set;
32: }
33: }// while (count) ends here
34: }

35: check for runtime race() {
36: if (any ti ∈ current match-set races with non-blocking call from

prev match-set){
37: while (non-blocking call is completed);{
38: }
39: }
40: }

41: find matchset() {
42: Store the computed match-sets in ampleset ofScurr;
43: if (ample set is not empty){
44: for each (ti in head element of the amplelist) {
45: check for runtime race();
46: give a go-ahead to threadof (i);
47: }
48: remove headelement from ampleset;
49: copy the ampleset inSnext;
50: return;
51: }
52: flag that a deadlock found;
53: }

Fig. 7. MCC scheduler algorithm

match-set (lines 29-32). A match-set consists of either a send-
receive call pair, or a single entry comprising a wait call.
The enabled transitions are computed with the help of the
Intra-HB relationship that is maintained for each state of the
scheduler. The priority order for evaluating these match-sets
is the following: (i) enabled wait call (ii) and then the send-

receive match-set.
The MCC scheduler also handlesget endpoint and cre-

ate endpointcalls. When a thread issues acreate endpoint
call, the scheduler looks to see if any blocked thread (on
get endpointcall) was waiting for it. If so, thecreate endpoint
call and the blockedget endpointcall are both signaled to
go-ahead. If that is not the case, then the scheduler stores
the created endpoint in an auxiliary table. When the scheduler
encounters aget endpointcall then it first looks up the table of
created endpoints. It blocks the thread if the sought endpoint
is not created. Otherwise,get endpointcall is immediately
signaled to go-ahead.

Every decision point advances the state of the scheduler.
The match-sets for a state under exploration are stored in a
separate data structure (ample-set). Every state has an ample-
set associated with it. One entry is selected from this ample-set
for the go-ahead. Subsequently, the match-set entry that has
been recently liberated is removed from the ample-set. The
updated ample-set is then copied to the next state. Note that
only the first interleaving builds the per-state ample-set.The
scheduler declares a deadlock in the code if at a state the
ample-set is found to be empty while there are still runnable
threads in the system (lines 41-52).

A safety check is performed before the participating threads
can be given a go-ahead. This safety check ensures that a
deterministic match manifests at runtime and the transitions of
the match-set in the current state (Scurr) do not race with the
transitions from the match-set in the previous state (Sprev).
In the case when a race is found then the scheduler spin-
loops until the racing transition fromSprev is completed by
repeatedly testing the request handle of the racing transition.
Only after the completion of the racing transition is the
current match-set processed (lines 35-40). Later if a wait
call is observed by the scheduler for the completed racing
transition, it is still issued to the runtime, however, it will
return immediately.

The procedureGenerateInterleavingis called in a loop until
there are no more replays to be performed. The decision
whether to perform a replay is made by inspecting the ample-
set of the visited states in the stack. If for each state the ample-
set is found to be empty then the scheduler has explored all
the relevant interleavings.

IV. RESULTS AND CONCLUDING REMARKS

We have developed the first dynamic verification engine
for MCAPI user applications that currently handles blocking
and non-blocking connection-less communication constructs
of the MCAPI reference implementation. Since no publicly
available benchmark using MCAPI is currently available, we
tested MCC successfully on small test examples constructed
by ourselves. For instance, the example program from Figure4
was verified in 3 interleavings in a fraction of a second. We
are currently working to extend MCC to support the full set
of MCAPI calls. Future works involves exploring solutions to
verify programs that have subtle bugs, for instance, data-races

in unison with the MCAPI non-determinism. We acknowledge
Jim Holt from Freescale for his help on this work.

REFERENCES

[1] http://www.multicore-association.org.
[2] http://www.mcs.anl.gov/mpi/
[3] http://www.llnl.gov/computing/tutorials/pthreads/
[4] Patrice Godefroid. VeriSoft: A Tool for the Automatic Analysis

of Concurrent Reactive Software. CAV 1997, 476-479.
[5] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order

reduction for model checking software.POPL, 110–121, 2005.
[6] Java Pathfinder. http://javapathfinder.sourceforge.net/.
[7] Yu Yang, Xiofang Chen, Ganesh Gopalakrishnan, R.M. Kirby.

Distributed Dynamic Pratial Order Reduction Based Verification.
SPIN 2007, 58-75.

[8] Sarvani Vakkalanka, Subodh V. Sharma, Ganesh Gopalakrishnan,
and Robert M. Kirby. ISP: A tool for model checking MPI
programs. PPoPP 2008. 285-286.

[9] M. Musuvathi and S. Qadeer. Iterative Context Bounding for
Systematic Testing of Multithreaded Programs. PLDI 2007, 446-
455.

[10] www.cs.utah.edu/formalverification/mediawiki/index.php/
MCAPI/

[11] Sarvani Vakkalanka, Ganesh Gopalakrishnan, and Robert M.
Kirby. Dynamic verification of MPI programs with reductionsin
presence of split operations and relaxed orderings. CAV 2008,
66-79.

[12] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking.
MIT Press, 2000.

[13] Subodh Sharma, Ganesh Gopalakrishnan, Eric Mercer, and Jim
Holt. MCC: A runtime verification tool for MCAPI applications.
accepted in FMCAD 2009.

[14] Gerard J. Holzmann The Model Checker Spin, IEEE Trans. on
Software Engineering, Vol. 23, No. 5, May 1997, pp. 279-295.

