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ABSTRACT
Software evolution in third-party libraries across version upgrades can
result in addition of new functionalities or change in existing APIs. As
a result, there is a real danger of impairment of backward compatibility.
Application developers, therefore, must keep constant vigil over library
enhancements to ensure application consistency, i.e., application retains
its semantic behavior across library upgrades. In this paper, we present
the design and implementation of POLLUX, a framework to detect
application-affecting changes across two versions of the same dependent
non-adversarial library binary, and provide feedback on whether the
application developer should link to the newer version or not. POLLUX

leverages relevant application test cases to drive execution through both
versions of the concerned library binary, records all concrete effects on the
environment, and compares them to determine semantic similarity across
the same API invocation for the two library versions. Our evaluation with
16 popular, open-source library binaries shows that POLLUX is accurate
with no false positives and works across compiler optimizations.

CCS Concepts
•Software and its engineering→ Software maintenance tools;
Software testing and debugging; Dynamic analysis; Software
evolution; Software libraries and repositories;

Keywords
Software maintenance, Library upgrade, Dynamic binary analysis.

1. INTRODUCTION
In current times, library driven software development is a reality

and use of third-party libraries is central to the development of
a large number of applications. However, this software reuse
comes at a cost—the included libraries can severely impact the
maintainability of software systems. Evolution of third-party
libraries may not always ensure backward compatibility, and
may introduce new functionalities altering existing APIs across
major upgrades. Thus, developers must keep constant vigil over
library enhancements to ensure application consistency, i.e., the
application retains its semantic behavior across library upgrades.
∗Both authors contributed equally.

(47) (48) static void dump(double value, string &out){

(48) - char buf[32];
(49) - snprintf(buf, sizeof buf, "%.17g", value);
(50) - out += buf;

(49) + if (std::isfinite(value)){

(50) + char buf[32];
(51) + snprintf(buf, sizeof buf, "%.17g", value);
(52) + out += buf;
(53) + }else {

(54) + out += "null";
(55) + }

(51) (56) }

Figure 1: Dropbox’s minor fix (adapted from [6]) could break applications.

A seven year study [44] of library release history in Maven
Central, involving 150K binary JAR files, revealed that one third
of all releases introduced at least one change that broke backward
compatibility. This figure remained unaffected whether the library
release was a major or a minor upgrade. Thus, choosing to update
the library dependencies of an application is a double-edged sword,
and demands thorough assessment of the effort needed to update
the dependencies and the potential benefits achieved by updating.

For example, according to the JSON standard the values NaN

and Infinity should be serialized to null. However, Dropbox’s
json11 library, which provides JSON parsing and serialization,
used snprintf in its dump function to emit a string that was not
compliant with the JSON standard. Thus, a minor fix as shown
in Fig. 1, emitted significantly different JSON output for several
applications, potentially breaking some functionality. This paper
tackles the problem of whether a developer can safely upgrade a
dependent library without affecting application functionality.

Prior work [30, 41, 43–45] has acknowledged the importance of
dependencies in software management, and has empirically studied
the effects of “update lag”, “freshness”, “quality”, and “popularity”
on dependency management. Teyton et al. [47] study library
upgrades for JAVA software, but focus entirely on reasons and
frequency of upgrades. However, none of the prior work focuses
on the application developer’s dilemma of whether library upgrades
would break critical application functionalities. Also, most prior
work rely on the analysis of source code, which may not even be
available for several third-party libraries.

In this work, we present POLLUX, a framework that detects
application-affecting changes across two versions of the same
library binary, and provides feedback on whether the application
developer should link to the newer version. POLLUX builds upon
the observation that any critical, functionality-affecting API change
in the newer version would manifest as a new or distinct concrete
effect, such as memory writes and system calls. In absence of
any such differences, the API invocation in the newer version is
semantically similar to the older version. In other words, if the
test cases elicit the same concrete effects upon invocation of the
APIs across both versions, the execution is functionally similar;



thus migrating to the newer version will not impact the application.
POLLUX leverages relevant application test cases (or the

exhaustive library test suite, if it is open source) to drive execution
through both versions of the concerned library binary, and records
all concrete effects on the environment. POLLUX then uses a
custom algorithm to compare these effects and determines the
behavioral similarity across the same API invocation for the two
library versions. In case of any dissimilarity, POLLUX lists the
offending API call (in the newer version). While POLLUX is
generic and applicable to all binaries, it is specific to libraries in the
way that it assumes consistency of API interfaces across releases.

POLLUX is not a binary differencing tool; its goal is to detect
semantic incompatibilities resulting from library upgrades. Note
that POLLUX’s effectiveness is contingent upon the exhaustiveness
of the test suite that drives it. Test suite expansion will
monotonically increase the differentials discovered by POLLUX.
Further, any code path either added, removed or modified, if not
traversed by the test suite, will result in POLLUX missing the
changes. In general, determining behavioral differences across
binaries is challenging for two major reasons. First, binaries
might be obfuscated or compiled with separate optimization
levels (say -O0 and -O3) resulting in different binaries. Thus,
graph isomorphism based techniques relying solely upon structural
similarities in control flow also fail in light of these optimizations.
Second, issue of scalability is ever present. Static and symbolic
execution techniques perform precise semantic analysis, but suffer
from issues of scaling to large binaries.

POLLUX overcomes these challenges using a path-sensitive
dynamic binary analysis technique to identify behaviorally similar
code segments in a library binary. Specifically, POLLUX generates
a dynamic call graph for all library functions traversed during each
library API invocation for both versions of the library. It then
populates each node in the call graph with metadata to reflect
concrete effects of execution associated with that function call, i.e.,
writes to stack and heap, and system calls observed during that
specific function invocation. POLLUX aggregates these concrete
effects into a function signature, i.e., a minimal set of concrete
effects uniquely identifying the function invocation even across
multiple executions for the same given inputs.

POLLUX leverages these function signatures to correlate similar
functionality traversed during the API execution across the two
library binaries. Any pair of non-matching function nodes
indicates changes in either structural (i.e., code refactoring) and/or
semantic functionality across the two binaries. POLLUX collates
all such functionality changes for the given application library and
notifies the application developer what specific API functionality is
affected by linking to the newer library binary.

We have implemented a prototype of POLLUX for x86 binaries
using Intel’s PIN dynamic binary instrumentation framework [18,
39]. We have applied it to 16 popular, open-source libraries, and
our evaluation shows that POLLUX correctly identifies semantic
differences with no false positives for libraries under consideration.
POLLUX’s core signature extraction algorithm reports a precision
of > 99% on call graphs generated for library APIs corresponding
to adjacent versions for all 16 open-source libraries.

This paper makes the following contributions:
(1) We provide a practical design (§ 4) for POLLUX along with
its novel dynamic binary analysis framework, which is robust,
accurate, and precise.
(2) We implement POLLUX (§ 5) for x86 binaries and evaluate
it (§ 6) on 16 open-source libraries to show its effectiveness in
determining functional similarity across library versions.

(1) int main() {

(3) int *ptr;
(4) ptr = (int*)malloc(sizeof(int));
(10) *ptr = 25;
(11) printf("%d", *ptr);
(12) free(ptr);
(13) return 0;
(14) }

Figure 2: Example source code.

(1) push %rbp
(2) mov %rsp,%rbp
(3) sub $0x10,%rsp
(4) mov $0x4,%edi
(5) callq 400510 <malloc@plt>
(6) mov %rax,-0x8(%rbp)
(7) mov -0x8(%rbp),%rax
(8) movl $0x19,(%rax)
(9) mov -0x8(%rbp),%rax
(10) mov (%rax),%eax
(11) mov %eax,%esi
(12) mov $0x400709,%edi
(13) mov $0x0,%eax
(14) callq 4004e0 <printf@plt>
(15) mov -0x8(%rbp),%rax
(16) mov %rax,%rdi
(17) callq 4004c0 <free@plt>
(18) mov $0x0,%eax
(19) leaveq
(20) retq
(21) nopw 0x0(%rax,%rax,1)

(a) Example compiled w/ gcc -O0.

(1) push %rbx
(2) mov $0x4,%edi
(3) callq 400520

<malloc@plt>
(4) mov $0x19,%edx
(5) mov %rax,rbx
(6) movl $0x19,(%rax)
(7) mov $0x400719,%esi
(8) mov $0x1,%edi
(9) xor %eax,%eax

(10) callq 400530
<__printf_chk@plt>

(11) mov %rbx,%rdi
(12) callq 4004e0 <free@plt>
(13) xor %eax,%eax
(14) pop %rbx
(15) retq

(b) Example compiled w/ gcc -O3.

Figure 3: Example code snippet depicting challenges in binary analysis.

2. MOTIVATION AND OVERVIEW
In this section, we motivate the need for POLLUX. First,

we discuss two concrete scenarios describing the possible
incompatibilities arising due to library upgrades. Second, we
discuss the issues involving precise binary analysis that make the
problem of detecting semantic differences challenging.
(1) libxml crash: libxml v2.7.6 encountered a segmentation fault
with the upgraded zlib v1.2.3.5 because of a complete re-write
of the gz* APIs, which read and write gzip files [13]. The fix to
libxml is to check the version of zlib and to use the current code for
ZLIB_VERNUM less than 0x1230. However, since both libxml and
zlib are widely deployed and numerous applications link to them
dynamically, older versions of libxml and also other applications,
without this fix, will fail with newer versions of zlib.
(2) Winamp crash: Winamp v5.666 build 3516 crashed due to a
buggy component plugin (in_mp3.dll) [24]. The bug in the newer
version of the plugin was an unintended consequence of fixing an
older bug in the metadata editor. The proposed solution involved
roll back of the plugin to build 3512.

The above examples highlight two issues commonly observed in
software evolution. First, dependent API changes cascade all the
way down to the application, which might crash if the appropriate
changes are not handled gracefully. Second, feature enhancements
in third party components, specially libraries and plugins, can
easily introduce bugs leading to software crashes.

While newer technologies, like Docker [5], do remedy problems
introduced by dependencies, they are, aimed primarily for software
distribution alone. The core “dependency” issues (as discussed
above) still remain unsolved in the context of system software,
thereby motivating the need for POLLUX, which provides feedback
to the developer on whether a dependency upgrade would affect or
preserve the application’s semantic behavior.
KEY CHALLENGES. Precise analysis of generic software binaries
poses several major challenges [37].
• Binary formats do not strictly differentiate between code and



data making their analysis difficult. Moreover, function boundaries
are not well-marked because return instructions are not mandatory.
• Binaries lack rich data types available in the source, and may
also lack symbolic information in release versions. Symbols and
types can otherwise be used to improve precision of the analysis.
• Modern microprocessor instruction sets are large and complex,
and many instructions have subtle differences, which, if ignored,
can make an analysis unsound. In addition, presence of indirect
jump instructions that calculate targets on-the-fly, and overlapping
instructions that get resolved only during runtime can make the
analysis incredibly hard.
• The basic purpose of call and ret instructions is to execute
a function call and a return, respectively. However, their usage to
perform indirect jumps is abusive and can confuse the analysis.
• Lastly, some machine architectures allow self-modifying
assembly code that can overwrite earlier code at the same address.
Thus, the actual instructions executed may not be even present in
the static disassembly of the binary.
OVERVIEW. Consider the example code shown in Fig. 2 where
memory is allocated for an integer, updated to the value 25, and
finally deallocated. The compiled output under optimizations -O0
and -O3 are shown in Fig. 3a and 3b, respectively. Despite
significant syntactic differences among the two versions, writes
to memory such as movl $0x19, (%rax) and system calls
(malloc, printf, and free) are preserved along execution
paths. POLLUX computes the signature of each function invocation
in an execution of the program by capturing the set of memory
writes and system calls performed by the function. The write set is
a singleton set containing write of 25 to an address stored in %rax
register. The set does not change across compiler optimizations,
the optimizations can be thought of as idempotent operations with
respect to the function signature set. POLLUX traverses through the
call graph obtained from a program execution and performs the said
activity repeatedly. At the end of the analysis, if no two function
nodes are found to be behaviorally dissimilar, POLLUX declares the
two versions to be behaviorally similar.

3. FORMAL OVERVIEW
A software binary can be considered to be a finite set of ordered

pairs of inputs and execution traces (where trace is a sequence of
events executed under the input; formal definition of a trace is
presented in the ensuing text). Let this set be denoted by B. For
the purposes of this paper, the regression test suite or applications
invoking libraries-under-test (LUT) define the domain of the input
set, denoted by I. Thus, for each input, i ∈ I, we denote a set of
execution traces of the program to be Bi := {τ |〈i, τ〉 ∈ B}. Such
a definition subsumes alterations to the program via semantically
equivalent code refactorings, compiler optimizations, speculative
out-of-order execution semantics of the hardware and (in the case
of concurrency) runtime scheduling. The set of all traces is denoted
by T . For each execution trace, an output value is produced. Since
I and T are finite sets and assuming programs to be deterministic,
the set of output values is also finite.

Given two binaries B, B′ of a software and a fixed regression
suite I, we wish to discover whether for each b := 〈i, τ〉 ∈ B
(where i ∈ I, τ ∈ T ) there exists a b′ := 〈i, τ ′〉 ∈ B′ (where
i ∈ I, τ ′ ∈ T ′), such that b and b′ have the same output and same
state of system memory. This is commonly referred as input-output
equivalence in the literature. There are a few scenarios relating to
the above discussion that are relevant to the context of our problem
i.e., differential analysis of libraries:

(1) output of b and b′ is same for a given i and τ = τ ′, then clearly
semantics have remain unchanged across the two versions,
(2) output of b and b′ is same for a given i, however τ 6= τ ′, then
it mandates further analysis; while it is possible that the output of
two traces is equivalent, the side-effects of traces may differ leading
to different states of the system memory, altogether. Discovering
precise side-effects is a hard problem in the average-case, while
undecidable in the worst-case setting, and
(3) output of b and b′ is not same for a given i; in such a case the
application developer must be notified that it may not be entirely
safe to upgrade the LUT.

3.1 Concrete Semantics
We begin by defining a simple low-level language that captures

the essence of this work. The language uses pc as the program
counter (note that we interpret pc to be pointing to the location
of the instruction under execution), a finite set of integer registers
R = {r1, · · · , rn}, a store m[.] that returns the contents at the
memory location of the argument. The set of expressions in the
language is denoted by Exp. For simplicity, we do not specify the
expressions in this language, although the expressions are allowed
to contain pc,R, andm[.] The set of program statements is denoted
by Stmt. A statement s ∈ Stmt can be one of the following:
• a variable assignment, ri := e with ri ∈ R, e ∈ Exp,
• a memory access, m[e1] := e2 or r2 = m[e1] , e1, e2 ∈ Exp,
• a guarded jmp, jmp e1, e2, where e1, e2 ∈ Exp, which jumps
the pc to the address evaluated from e2 given the (guard) e1

evaluates to zero,
• a procedure call, p().

A state s of a program defined in the above language is given
by a triple: 〈M, l, fr〉 where M : 〈ρ, ζ〉 captures the state of
system’s memory. Function ρ : R → Z provides valuations to
the registers, ζ : N → Z provides the contents of the memory
addresses, l ∈ N is the current address at which the control is , and
fr = (xi, · · · , xmax−1) is the sequence of addresses indicating
the frame structure of the stack. xmax is the maximum address
to which stack can grow and xi is the least address on the stack
(stack grows downwards). A state transitions to a new state upon
the execution of a statement in the following manner:

T [[ri := e]](s) := s[ρ(ri) 7→ ρ([[e]](s))][l 7→ s(l) + 1]

T [[ri := m[e1]]](s) := s[ρ(ri) 7→ ζ([[e1]](s))][l 7→ s(l) + 1]

T [[m[e1] := e2]](s) := s[ζ([[e1]](s)) 7→ [[e2]](s)][l 7→ s(l) + 1]

T [[jmp e1, e2]](s) :=

{
s[l 7→ sl + 1] if [[e1]](s) 6= 0

s[l 7→ [[e2]](s)] otherwise

We assume that [[e]](s) is a deterministic evaluation function of
statement e in state s. T [[e]](s) is essentially a state transformer
function that produces a resultant state when statement e is
executed from state s. The map 7→ updates/adds specific
entries within a state. Finally, T [[q()]](s) is modeled by register
assignment statements modeling two important aspects of the
function call: stack frame allocation and deallocation. The body
of the procedure q is modeled by statements of the language. At
the time of allocation, the stack is extended by the frame size of
q(). Thus, for stack allocation:

T [[rfp = rfp − c]](s) = s[ρ(xi) 7→ (ρ(xi)− c)(s)]
[f 7→ (xi − c, xi · · · , xmax−1)]

rfp is the register reserved for storing current frame pointer.



Similarly, after the execution of the body of the function, the
current stack frame at state s would be deallocated with fr :=
(xi − c, xi · · · , xmax−1):

T [[rfp = rfp + c]](s) = s[ρ(xi) 7→ (ρ(xi) + c)(s)]

[f 7→ (xi · · · , xmax−1)]

A trace τ of a program is a sequence of states s0, · · · sn−1 with
s0 as the start state. We assume that there exists function that maps
program behaviors to outputs,O : B → Z. We define the notion of
behavioral equivalence of two traces by the following definition:

Def. 3.1. Two traces τ, τ ′ are strictly-similar when on input i the
state of memory is equal at their final states sn, s′n, i.e.,sn(M) =
s′n(M) and O(b) = O(b′) where b = 〈i, τ〉 and b′ = 〈i, τ ′〉.

Although observing the output of a trace is self-evident,
observing the effects of a library code execution on system’s
memory is not straightforward. For instance, programs could
legitimately be writing addresses of memory locations as values
into registers or memory locations. Such memory-address writes
are bound to change even when the same program is executed
multiple times. On account of such complexity, we define the
notion ofα-similarity of behaviors (as opposed to strict equivalence
as defined above). The motivation behind α-similarity is to
accommodate such address-based writes to registers/locations. Let
Wτ := {ζ[[e1]](s)|s′, s ∈ τ, T [[m[e1] := e2]](s′) = s} be the
multiset of values written into memory in the trace τ . Further,
let Wτ |q be the projection of writes performed by the procedure
q called in τ . Register writes are not taken into account since we
assume that often local or temporary values are written to registers.
Even if that were not the case, scalability of POLLUX’s analysis
demands that we drop tracking writes to registers (per § 4).

Def. 3.2. Two behaviors b, b′ from binariesB,B′, respectively, on
a given input i are α-similar when the following conditions hold:
O(b) = O(b′) and |Wτ∩Wτ′ ||Wτ∪Wτ′ |

= α.

We denote α-similarity of behaviors by a relational operator'α,
if b, b′ are α-similar then b 'α b′. For a given input i, we abuse the
notation and apply it for traces τ 'α τ ′ when behaviors are found
to be α-similar. Note that Def. 3.2 reduces to Def. 3.1 when α=1.

4. POLLUX
KEY IDEA. POLLUX relies on a key observation that any critical or
functionality affecting change in third-party code is accompanied
by corresponding side-effects, such as additional memory writes
or system calls. In other words, key semantic behavior, such
as memory writes external to the stack frame and system call
sequence, remains unchanged despite compiler optimizations.

POLLUX takes as input the two library binaries and a test suite
to drive execution of those binaries. For every test case, POLLUX
generates a call graph with additional metadata, characterizing the
signature for each function invocation. Next, POLLUX uses a
custom algorithm that analyzes the two execution traces to identify
semantically similar execution fragments. Execution segments that
do not match are reported to the developer.

4.1 Execution Driver
The execution driver executes the test suite for both versions

of the binaries. Specifically, it invokes the trace collector to
start recording the effects of execution of each test case in the
test suite. Once execution with the first binary is complete, the
execution driver (i) serializes the recordings to external storage,
(ii) dynamically links the test cases to second binary and executes
them, and (iii) signals the trace collector to start recording again.

4.2 Trace Collector
Out of the several possible function level features, such as count

of memory reads and writes, system calls, branching instructions,
and indirect jumps, only critical, functionality-preserving memory
writes and sequence of system call invocations remain unchanged
in face of different compiler optimizations (-O0 against -O3). This
unambiguity is because both these features abstract out all the
syntactic sugar (or operational mechanics), and are tightly linked to
the functionality (or semantics) itself. Hence, POLLUX uses these
two features to determine semantic similarity.

The trace collector is responsible for detecting and recording
these two effects upon each test case execution. While it may be
best to passively monitor these side-effects, it is not possible to do
so for all effects, like writes to the memory. Recording such effects
would entail instrumenting the entire execution environment,
which would be prohibitively expensive. Thus, POLLUX leverages
dynamic binary instrumentation for capturing effects of interest at
a fine-grained level. This instrumentation preserves the intended
execution effects of the binary, while also executing the hooks to
capture additional metadata.

While binary instrumentation frameworks provide both coarse-
and fine-grained hooks, POLLUX instruments the given binary at a
per-instruction level granularity, thereby sacrificing low execution
overhead in favor of high accuracy. For each instruction, POLLUX
records the x86 instruction, and the corresponding data/address
values. Thus, the instrumented binary upon execution enables
POLLUX to keep precise track of: (1) data/addresses written to
memory, with distinction between stack and heap, (2) system calls
invoked along with their arguments, (3) calls to other imported
library functions via the Procedure Linkage Table (plt), and (4)
function return values, if available. At the end of test suite
execution, the trace collector serializes the recorded values and
trace analyzer is invoked, which is described next.

4.3 Trace Analyzer
The trace analyzer takes as input the serialized recordings for

test suites corresponding to both library binaries, and determines
semantic similarity using a layered two phase analysis. First,
POLLUX deserializes each trace and creates a call graph with
each node decorated with function-level metadata corresponding
to memory writes and system call invocations. POLLUX then
computes a precise signature for each function using metadata
on memory writes and asynchronous system call invocations, and
matches these function call nodes across the two execution traces
for structural similarities based on (i) caller-callee relationship, and
(ii) potential code refactoring. Second, if no dissimilar call nodes
are observed, then POLLUX determines the execution sequences to
be semantically similar iff the sequences of synchronous system
call invocations observed across both the executions are same.
CALL GRAPH CONSTRUCTION. POLLUX determines call
context per instruction, and groups instructions with the same
context to build nodes in the call graph. Thus, while distinct
invocations of the same function generate distinct nodes in the call
graph, a recursive invocation generates a single node in the graph.

4.3.1 Function-level Similarity
POLLUX constructs precise call graphs from deserialized

recordings using a shadow execution context, and updates
it on every new call instruction encountered in the trace.
Simultaneously, it populates the nodes in the call graph
with function-level metadata, such as writes to memory and
asynchronous system call invocations. POLLUX considers an
asynchronous system call equivalent to a memory write due to



GRAPH_MATCH(a, b, MatchSet)
Input: a,b : Call nodes in execution graph of current library.

MatchSet : Set of all matching node pairs.
Output: MatchSet : Set of all matching node pairs.

MatchSet = MatchSet ∪ {〈 a, b 〉};
Γa = Γa − Γb; Γb = Γb − Γa;
Ca = CHILDREN(a); Cb = CHILDREN(b);
foreach x ∈ Ca,y ∈ Cb: node_match(x,y) ∧ 〈 x, y 〉 6∈ MatchSet do

MatchSet = GRAPH_MATCH(x, y, MatchSet);
end
foreach x ∈ Ca : node_match(x, b) ∧ 〈 x, b 〉 6∈ MatchSet do

MatchSet = GRAPH_MATCH(x, b, MatchSet);
end
foreach y ∈ Cb : node_match(a, y) ∧ 〈 a, y 〉 6∈ MatchSet do

MatchSet = GRAPH_MATCH(a, y, MatchSet);
end
foreach x ∈ Ca,y ∈ Cb: 〈 x, - 〉 6∈ MatchSet ∧ 〈 -, y 〉 6∈ MatchSet do
〈 p, q 〉 = FIND(x, y);
MatchSet = GRAPH_MATCH(p, q, MatchSet);

end
FIND(a, b)
Input: a,b : Call nodes in execution graph for current library.
Output: O : Set of matching node pairs from the two graphs
Initialize: O = ∅.
if node_match∗(a, b) then O =O ∪ {〈 a, b 〉};
foreach x ∈ {a} ∪ CHILDREN(a), y ∈ {b} ∪ CHILDREN(b) do

if 〈 x, y 〉 6= 〈 a, b 〉 then O =O ∪ FIND(x, y);
end

GRAPH_SIMILARITY(r, r′, MatchSet)
Input: r,r’ : Root node in library L and L’, respectively.

MatchSet : Set of all matching node pairs.
Output: Res: Boolean variable for match or no match
Initialize: MatchSet = ∅, Res = false.
foreach 〈 a, b 〉 ∈ FIND(r, r′) do

MatchSet = MatchSet ∪ GRAPH_MATCH(a, b, MatchSet);
end
if |MatchSet| > tv ∧ Ωr = Ωr′ then Res = true;

Algorithm 1: Match nodes with code refactoring.

its non-blocking nature. Additionally, it maintains graph-level
metadata that includes the exact sequence of synchronous system
calls. The key observation here is that asynchronous system calls
can be reordered with other operations, but synchronous calls must
occur in sequence. Thus, semantic similarity must ensure that the
sequence of synchronous system calls is preserved across both the
executions. Any out of order synchronous system calls, which are
blocking in nature (unlike an asynchronous call), could potentially
indicate a different behavior, and hence, is not semantically similar.

Algorithm 1 depicts the steps POLLUX uses to determine
function-level similarity across two call graphs. POLLUX leverages
node metadata to compute a signature for every function in the two
call graphs. It then uses the Sørensen-Dice index [20] (sv) and an
empirically determined threshold (θ) to determine a partial match
between two call nodes. POLLUX also considers code refactorings,
such as node splitting and inlining, while evaluating a function-
level match. Observe that Sørensen-Dice index is essentially an
instance of α−similarity as noted in Def. 3.2.
FUNCTION SIGNATURE. The signature of a function must (i)
be unique, and (ii) encapsulate semantic functionality. It follows
linearly from Def. 3.2 that function signature of procedures must
factor in the writes performed by it. It may not always be
possible to track writes (writes performed by system calls), hence
we conservatively treat asynchronous system call invocations as
writes. Thus, for procedure q, its function signature is:

Γq =Wτ |q ≈ 〈Ŵτ |q,Sq〉 (1)

where Ŵτ |q is the multiset of all the memory writes of q that are
observable, and Sq is the multiset of system call invocations in q.

The function signature for a specific call site, however, contains
values which are execution dependent, such as addresses generated
due to dynamic memory allocation; this introduces significant

problem in deterministically assigning function signatures that do
not fluctuate across repeated executions of the program. This
problem stems from the fact that at the instruction level, POLLUX
cannot distinguish between concrete data values and memory
addresses, and accumulates both of them in the same write set.
Keeping just the concrete data value and removing the addresses
from the set of all memory writes would eliminate significant
randomness in the function signature. Also, note that a function
must export values out of its scope to perform useful functionality,
which means the writes to function local variables result in no
critical semantic behavior. Thus, POLLUX leverages process maps
to determine address ranges for the current stack frame, and
discards all write values within this range. Subsequently, function
return values via the stack and registers (refer § 3) are not included
in the function signature. Prior work [34] also notes that return
values do not contribute significantly to the function signature.
SIGNATURE MATCH. A desirable signature matching scheme
must ensure (i) few or no false negatives, and (ii) low false
positives. However, an “exact” signature match solely from (1)
can potentially result in high false positives in case of compiler
optimizations, since these transformations may change the set of
concrete data values produced by the function. Thus, POLLUX
leverages a similarity-based match between the write sets generated
by two functions a and b, based on the Sørensen-Dice index:
sv = 2|Γa∩Γb|

|Γa|+|Γb|
, where set operators ∪,∩,+ are applied separately

to Ŵτ |x and Sq , x ∈ a, b. We consider α-similarity of functions
only when the index is greater than a certain threshold (θ ∈ R>0).
The caveat is that due to reliance on a threshold value, it is possible
that the value is not sufficiently high leading to false negatives (i.e.,
functions that should match but did not) or sufficiently low, leading
to false positives (i.e., functions that should not match but did).

POLLUX uses function names, if available, to further improve
the precision of the matching scheme. We observe that in a non-
stripped binary where the symbol names are present, overloaded
functions have different names. Furthermore, in C++, a function
name is a mangled version of its class hierarchy and its parameters,
which entails that every function name in the binary is unique.
Thus, in a non-adversarial setting where symbols may be present,
POLLUX utilizes the function names in addition to Sørensen-Dice
index to match functions across binary executions. Finally, it
is common for library developers to refactor code, i.e., inline or
outline functions, or split a function into several smaller units. Prior
art [?, 27, 34] has used function names as a heuristic in specific
cases and POLLUX can leverage any of these more sophisticated
techniques as its precision isn’t contingent upon function names.

Note that with such function splitting, matching with function
names is futile. In addition, the refactored functions make
Sørensen-Dice index ineffective, since the index is based on
function similarity rather than inclusion relationship. In such cases,
using Sørensen-Dice index may lead to several false negatives.
In order to make signature-matching more meaningful in the
context of inclusion relationship, we introduce a new index
tv = |Γa∩Γb|

min(|Γa|,|Γb|)
for functions a and b; this index, incidentally,

also captures the results with the same precision as the Sørensen-
Dice index would have for cases where inclusion relationship was
absent. Thus, finally the node matching function is defined as:

node_match(a, b) =

{
true : tv ≥ θ
true : λa = λb ∧ θ′ < tv < θ
false : Otherwise

where λx returns the name of the function x. When tv < θ by a
small margin (i.e., θ−θ′ = 5%), then, function names are matched.

Refactoring suggests that our matching mechanism should be



capable of performing partial signature matches and also matches
with the remainder of the signatures after a partial match is
performed. In order to deal with partial matching and to maximize
structurally meaningful matching, POLLUX uses the notion of
residual signatures [42]. Specifically, whenever POLLUX matches
the signatures of two functions, it also updates their current
signatures with residual signatures (to be used for further matching)
as follows: Γa = Γa − Γb and Γb = Γb − Γa.
(1) Inlining/Outlining: Library functions are often inlined to
achieve better performance. A function that is inlined adds its
memory writes and asynchronous system calls data to its caller’s
signature, i.e.,if function a has its callee function b inlined in a
newer version, it will result in the following signature of the new
function: Γa′ = Wτ |a ∪ Wτ |b. Similarly, a function that is
outlined as b in a newer version will have an opposite effect on
the signature of the counterpart of b’s caller function a as follows:
Γa′ =Wτ |a−Wτ |b. The inclusion index tv captures this inclusion
relationship allowing nodes to be matched correctly.
(2) Splitting/Combining: To achieve stronger cohesion and better
maintainability, developers split functions. Splitting functions have
an impact on the signatures and matching which is similar to
outlining. More formally, when a function f that is split/combined
into/from n functions f1, . . . , fn, the following relation holds:
Γf =Wτ |f1 ∪ . . . ∪Wτ |fn .
EMPIRICAL THRESHOLD (θ). POLLUX randomly selects test
cases for APIs that remain unmodified across the two neighboring
versions of the library (corroborated by the commits), and
determines tv iteratively till the number of unmatched function
nodes across the call graphs (corresponding to the two library
executions) is less than 1%. In other words, at least 99% function
nodes must match at this tv . This final value of tv is the threshold θ.
The above iterative approach has the benefit that for most common
cases, θ reflects the lower bound of similarity between semantically
similar functions. Any value of tv ≤ θ that causes the number of
unmatched function nodes to increase above 1% indicates, with a
high probability, that the functionality has indeed changed.

4.3.2 Graph-level Similarity
In order to demonstrate similarity of two call graphs, POLLUX

additionally handles the case when there are blocking system calls
issued. It uses function Ωx = 〈si, . . . , sj〉 and si, . . . , sj is the
sequence of synchronous system calls observed in the execution.

4.4 Diagnosis
In case of dissimilar nodes, POLLUX traverses the function

signature to determine the cause as either an extraneous
data/address value or system call (or their order). In each case, the
application developer receives a feedback indicating the offending
API invocation, along with the entire call sequence leading up to
the function responsible for the unmatched data/address value or
system call that caused the dissimilarity.
COMPARISON WITH PRIOR ART. POLLUX’s signature for
matching functions across two execution graphs is robust and
effective (as will be shown later in § 6). Unlike prior art [33–35,42],
POLLUX leverages a layered approach to determining semantic
similarity, and uses only the most critical side-affecting features,
i.e., memory writes and system calls, which remain constant
even across various compiler optimizations. Like BLEX [34],
POLLUX also leverages dynamic binary analysis, but uses far fewer
features to create succinct signatures. Additionally, BLEX aims for
instruction coverage and generates random inputs for differential
analysis that is not path-directed, thereby exploring infeasible

paths and leading to several false positives. Unlike BinDiff [33]
and [35], which use graph isomorphism techniques, POLLUX does
not rely upon structural similarity and function names alone. Thus,
POLLUX’s signature built using dynamic mechanism is robust
even under various compiler optimizations. Unlike [42], where
a function signature includes all values read or written and are
humongous, POLLUX uses only concrete data values and system
call sequence to generate crisp function signatures.

4.5 Compiler Optimizations
Compiler optimization levels, such as -O3, are extremely

aggressive and typically generate an execution graph that is
significantly different from the one generated at level -O0. In fact,
optimization -O3 is akin to code refactoring at the assembly level.
However, no amount of optimization should alter the functionality
critical memory writes and sequence of system call invocations.
In the absence of any structural similarity, POLLUX discards
the function level signature matching and instead compares the
aggregate set of write, and sequence of system call invocations.
POLLUX leverages the index tv for comparison across optimization
levels. Since level -O3 discards several intermediate memory
writes, Γa ⊆ Γb for two binaries a and b compiled for the same
source code with levels -O3 and -O0 respectively. In other words,
tv ≈ 1 indicates semantic similarity between binaries a and b.

Note that POLLUX’s target is primarily application developers
who include benign, third-party libraries, and typically, developers
do not change compiler optimizations frequently for production-
level code. Thus, matching semantic similarity across optimization
levels is not the common case for POLLUX.

5. IMPLEMENTATION
We implemented a prototype of POLLUX based on the design

described in § 4. While the trace analyzer and collector were
automated and required ∼900 lines of C++ to implement, the
execution driver was triggered manually. We leveraged the Intel
PIN [18, 39] dynamic binary instrumentation framework (v2.14)
because of its ease of use in instrumenting the library binaries, and
recording execution side-effects. We wrote a minimal “pintool”,
which is code that the PIN framework injects dynamically at
selected points during instruction sequence, to extract relevant
execution metadata and build a call graph for the given execution.
(1) Call graph construction. In assembly, function transitions,
i.e., invocations and returns, happen via the call*, jmp* and ret

family of instructions. POLLUX maintains a shadow stack of call
context by leveraging PIN APIs to extract the function name at each
transition instruction. However, we observed that a few functions
did not have an explicit ret instruction, leading to anomalous call
graphs. POLLUX overcomes this challenge by discarding the use of
instruction-level instrumentation and switching to instrumentation
at the granularity of a TRACE 1. Since, a TRACE is part of exactly
one function invocation, POLLUX invokes PIN APIs at the start
of each TRACE to determine the function name, which helps to
reliably maintain the shadow stack of call contexts. Note that PIN
cannot reliably instrument functions in the presence of tail calls or
when return instructions cannot reliably be detected [19]. Thus we
did not use PIN’s function-level instrumentation.
(2) Detecting writes to stack: Data values written to the stack

1A TRACE is a straight-line instruction sequence with exactly one entry
point. It usually ends with an unconditional branch, such as a call, return or
unconditional jump. However, a TRACE may include multiple exit points
as long as they are conditional. If PIN detected a branch to a location within
a TRACE, it will end the TRACE at that location and start a new TRACE.



mostly correspond to non-critical function local operations. Hence,
it is important to discard them, so that the function signature
uniquely identifies only critical functionality. Thus, POLLUX
determines the address range available to the current process for
writing to the stack frame, and removes from its write set any
value written to an address within this range. To do so, POLLUX
determines the process id for the currently executing test case, and
reads the corresponding process maps from the /proc file system
to determine the permissible stack range.

POLLUX leverages several optimizations to speed up the overall
analysis and improve precision.
• TRACE-level instrumentation: Instruction instrumentation
incurs significant overheads (due to dynamic code injection before
every instruction for call graph construction), and also induces
anomalies in construction as discussed earlier. POLLUX’s use of
PIN’s TRACE-level instrumentation not only improves accuracy but
also reduces the number of instrumentation points, which speeds up
analysis by an order of magnitude.
• Pruning the call graph: POLLUX prunes the call graph for
faster analysis. Specifically, the call graph starts at the API entry
point and continues till the execution hits any glibc method
invocations, like those corresponding to memory allocation and
management, system calls, etc. The key observation here is that
glibc and other system libraries, like ldlinux, provide access
to fairly low-level functionalities to several system components,
which change much less frequently compared with application
libraries. Furthermore, a change in system libraries often
necessitates upgrading the entire system and its dependencies. Not
traversing the call graph before the API entry point and after the
glibc function invocations significantly reduces the size of the call
graph to be analyzed for semantic similarity.
• Improving signature precision: As explained in § 4.3.1,
POLLUX identifies function local writes to memory to remove noise
from the function signature. To further improve the signature,
POLLUX executes each test case twice (linked to the same library
binary), and takes an intersection between the side-effects observed
across the two executions. The intuition here is that functionality
preserving side-effects, such as writes and system calls, would
remain unaffected and be present in the intersection.

6. EVALUATION
In § 6.1, we evaluate POLLUX for accuracy of detecting

semantically relevant changes across several macrobenchmarks
consisting of user applications. In § 6.2, we determine the precision
of POLLUX’s signature matching algorithm. In § 6.3, we determine
the effectiveness of the various optimizations described earlier
in § 5. In § 6.4, we check POLLUX’s robustness across compiler
optimizations. Lastly, in § 6.5, we present our experiences with
POLLUX and demonstrate its utility in diverse conditions.
EXPERIMENTAL SETUP. All experiments were performed atop a
VM having 4 VCPUs at 2.50 GHz, provisioned with 8 GB of RAM,
and running 64 bit Ubuntu v12.04 with Intel PIN v2.14 installed.
DATA SET. We chose 16 popular, open-source C/C++ libraries
from GitHub repositories (see Table 1), and randomly selected
commit versions along with their test suites. We then manually
inspected source code and the release notes corresponding to
these commit versions and corroborated each such change. While
POLLUX’s analysis is entirely automatic, this manual involvement
to validate our results limits the number of libraries analyzed.
EMPIRICAL DETERMINATION OF THRESHOLDS. We
empirically determined the thresholds θ and θ′ for each library
(as described earlier in § 4.3). We observed that at θ = 0.95,

the fraction of unmatched nodes was < 1% across all libraries in
our data set. Higher value of θ means a stricter check and would
increase the fraction of unmatched nodes, while a lower value of θ
indicates a more relaxed check and would have fewer unmatched
nodes. Note that for a different corpus of libraries, θ might vary.
We further selected θ′ = 0.95 ∗ θ.

6.1 Accuracy
We determine POLLUX’s accuracy when one or more dependent

libraries for a user application have changed. We consider
POLLUX’s output as accurate if it correctly determines changes in
library code based on unmatched function nodes (< 1%) in the call
graphs and system call order, which must be preserved for semantic
similarity. We capture ground truth for the concerned scenarios
using commits from the open-source corresponding repositories.

We observe that barring a few security updates where code may
get removed, as in the Heartbleed bug [22], most bug patches and
feature enhancements either add new code or alter existing library
code syntactically. We leverage the library test suites since the
existing application test suites may not cover the entire gamut of
functionality and run the suite with the two different versions. If
the fraction of unmatched nodes is greater than 1% at θ = 0.95,
or there was a change in the system call order or count, POLLUX
concludes a semantic change in the existing library version.

Table 1 reports our results. We observe that POLLUX manages
to capture even subtle changes, such as in json11, where a mere 4
line change in the dump function (see Fig. 1) introduced significant
changes across several other API executions, leading to ∼7%
unmatched nodes across the test suite.

POLLUX correctly detects semantic changes in 28 out of the
30 scenarios tested. POLLUX reports false alarms for some
Capstone and Valijson test cases. On manual inspection of
the commit logs, we observed that the Capstone library did not
have a test case that traversed the modified code. Since POLLUX
leverages dynamic analysis, paths not traversed in the code are
not validated for semantic changes. Hence, POLLUX reported no
change in semantic similarity across the two Capstone versions.
In Valijson, we observed that the modified API introduced no
extra nodes. Furthermore, the code introduced only a conditional
statement, which was not traversed by any of the test cases, similar
to the Capstone:ppc scenario. Thus, POLLUX correctly reports
semantic similarity in each of the 30 cases, thereby having a 100%
accuracy for libraries under consideration.

6.2 Precision
We determine the precision of POLLUX’s function signature

matching algorithm under the setting where there are no semantic
differences for a given library API across the two versions. In such
a scenario, we define precision as: η = 1 − (n/N), where N is
the total number of nodes in the call graph, and n is the unmatched
nodes across the two versions of the library.

We select test cases for each library where the API does not
change semantically across the two versions. We corroborate this
API similarity by inspecting commits to the library repository. We
run POLLUX for these test cases and measure the number of nodes
that match across the API call graphs for the two executions. We
observe that on average POLLUX reports a high precision (>0.99)
across all test cases (see Table 2). We also note that libtorrent
reports a high number of unmatched nodes, because the particular
test case downloads a file, and thus several operational parameters,
such as available network bandwidth and bytes downloaded,
change significantly across two execution traces, thereby causing
POLLUX to report the high number of unmatched nodes.



Table 1: POLLUX accuracy across patches, minor and major revision changes for various libraries at θ = 0.95. Note that POLLUX detects a semantic change if unmatched
nodes are greater than 1% and system call order is not preserved. ∗ indicates all APIs in the test suite.

# Application Library API Version / Commit # Nodes System calls DetectionOld New Total Unmatched % preserved
1 ArmExec Capstone [1] arm 3.0.3 3.0.4 5095 90 1.766 7 3
2 ArmExec Capstone mips 3.0.3 3.0.4 1291 20 1.549 3 3
3 ArmExec Capstone ppc 3.0.3 3.0.4 1856 6 0.323 3 7
4 ArmExec Capstone x86 3.0.3 3.0.4 4045 177 4.376 3 3
5 ArmExec Capstone xcore 3.0.3 3.0.4 1233 31 2.514 7 3
6 Visual Studio Catch [2] ∗ 1.2.0 build 45 1.3.5 latest 26032 4432 17.025 3 3
7 Gazebo DevIL [4] ∗ 1.7.8:1f0d 1.7.8:7241 64 4 6.250 3 3
8 TensorFlow Eigen [7] ∗ 3.2.7 3.2.8 366 4 1.093 3 3
9 TensorFlow Eigen ∗ 3.2.7 3.2.8 3340 60 1.796 3 3

10 TensorFlow Eigen ∗ 3.2 3.2.8 251 81 32.271 3 3
11 Boost Fit [8] ∗ e3bf390 52b54cd 76 6 7.895 3 3
12 Boost Fit ∗ 52b54cd 66976be 230 11 4.783 3 3
13 SageMath GSL [9] ∗ 1.9 1.10 11932 354 2.967 3 3
14 SageMath GSL ∗ 1.9 2.0 11932 787 6.596 3 3
15 NodeJS http-parser [10] parse_url ab0b16 7d75dd 99 2 2.020 3 3
16 NodeJS http-parser execute ab0b16 7d75dd 71786 7161 9.975 3 3
17 Dropbox json11 [6] dump 019364 0e8c5b 534 41 7.678 3 3
18 Dropbox json11 parse 019364 0e8c5b 1077 74 6.871 3 3
19 CMake libarchive [11] ∗ 3.0.2 3.1.0 14991 8327 55.55 3 3
20 AlsaPlayer libcurl [3] ∗ 7.20.0 7.21.1 1372 250 18.222 3 3
21 AlsaPlayer libcurl ∗ 7.20.0 7.47.0 1008 396 39.286 3 3
22 Deluge libtorrent [12] ∗ 1.0 1.1 1459 554 37.971 3 3
23 Aisoy Onion [14] response_new c812b35 88a659 786 48 6.107 3 3
24 Quinoa PEGTL [16] ∗ 1.2.1 1.2.2 34010 3013 8.859 3 3
25 Quinoa PEGTL ∗ 1.1.0 1.2.2 25182 1535 6.096 3 3
26 CBDM spdlog [21] ∗ c7864ae e248895 1880 220 11.702 3 3
27 Puppet Valijson [23] ∗ b241b37 e9b5016 3343 17 0.509 3 7
28 OpenSSH zlib [25] ∗ 2689b c58f7a 1648 93 5.643 3 3
29 OpenSSH zlib ∗ 1.2.7 1.2.8 1278 85 6.651 3 3
30 OpenSSH zlib ∗ 1.2.5 1.2.8 1204 487 40.449 3 3
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Figure 4: Variation in POLLUX’s precision and other properties.

Table 2: POLLUX precision with 16 libraries (> 250K functions) at θ = 0.95.

# Library Version / Commit # Nodes PrecisionOld New Total Unmatched
1 Capstone b560c2 c508c4 56076 16 0.999
2 Catch ae5ee2c f895e0d 27753 0 1.000
3 DevIL 1.7.8:cdc3 1.7.8:c806 264 2 0.992
4 Eigen a1430dd 08e2e06 2323 11 0.995
5 Fit 953b721 ec7a043 2002 0 1.000
6 GSL 5c14 002f 13851 0 1.000
7 http-parser bee48 4e382f 72537 0 1.000
8 json11 a6a66 e1d5b 2395 0 1.000
9 libarchive 3.1.0:5818 3.1.2:19f2 15222 5 0.999

10 libcurl 3c2e e506 2652 0 1.000
11 libtorrent 1.0.9 1.1.0 4270 39 0.990
12 Onion d7eb5b7 801bb9b 4540 0 1.000
13 PEGTL 02ba 9e3b 44078 0 1.000
14 spdlog c0c5c01 a6a661e 587 0 1.000
15 Valijson 1ade1c5 b241b37 3343 17 0.995
16 zlib 1.2.7.2 1.2.7.3 1281 2 0.998

(1) Variation in precision with θ: We select five libraries from
our data set and plot the variation in POLLUX’s precision for
different values of θ = 0.85, 0.90, 0.95, and 1.00. Fig. 4a plots

the results. We observe that as θ increases, precision η decreases
because in a stricter setting fewer function nodes match.
(2) Frequency of node matches: We measure the frequency of
matches for nodes whose function signature matched to determine
the aggressiveness of POLLUX’s signature matching algorithm.
Fig. 4b plots the results for all libraries in our data set at θ = 0.95.
The y-axis in the graph starts at 99.5%. We observe that across
all libraries POLLUX correctly matches > 99.5% of nodes, which
indicates the effectiveness of the algorithm. Only Catch, Eigen,
libarchive and zlib had minuscule number of nodes with
multiple matches due to sparse or common function signatures.
(3) Variation in graph comparison time: We determine the
variation in the match time with increase in nodes in the call
graph. Fig. 4c plots the results for all libraries, except GSL and
libarchive, at θ = 0.95. We observe that in general as the
nodes increase, the match time increases exponentially. However,
both GSL and libarchive show much higher matching times
than normal, which is possible since matching also depends on the



Table 3: Effectiveness of pruning glibc nodes at θ = 0.95.

# Library Version # Nodes (w/o opt.) # Nodes (w/ opt.) Savings
Old New Total Unmatched Total Unmatched (%)

1 GSL 5c14 002f 25966 0 13851 0 46.66
2 json11 a6a66 e1d5bc 7814 63 2395 0 69.35
3 Onion d7eb5 801bb 725 8 699 0 3.59
4 PEGTL 02ba 9e3b 53621 257 32706 0 39.01
5 zlib 1.2.7.2 1.2.7.3 1969 3 1281 2 34.94

Table 4: Effectiveness of re-executing libraries on signature size θ = 0.95.

# Library Version/ Avg. Signature Size Savings
Commit w/o opt. w/ opt. (%)

1 Capstone b560c2 21.61 21.11 2.34
2 Eigen 3.2.7 52.37 43.62 16.72
3 Fit 9e132 17.81 16.13 9.42
4 Onion 801bb 17.51 15.43 11.90
5 libtorrent 1.0.9 22.14 20.82 5.96

Table 5: Effectiveness of re-executing libraries on precision at θ = 0.95.

# Library Version # Total Unmatched Nodes Savings
Old New Nodes w/o opt. w/ opt. (%)

1 Eigen a1430 08e2e 2323 267 11 95.88
2 libarchive 5818 19f2 15222 1833 5 99.73
3 libtorrent 1.0.9 1.1.0 4270 1460 37 97.47
4 Onion d7eb5 801bb 4540 686 0 100.00
5 PEGTL 02ba 9e3b 44078 2161 0 100.00

structure of the graph. Code refactoring can also significantly alter
the graph structure.

6.3 Effectiveness of Optimizations
(1) Pruning glibc nodes: We selected five libraries and executed
their entire test suites with and without this optimization enabled.
Table 3 lists the results. We observe that pruning glibc nodes
alone not only decreases the number of unmatched nodes, but also
significantly reduces the graph size by an average of ∼39% across
the five libraries under consideration.
(2) Library re-execution: We selected five libraries and executed
their test suites twice with POLLUX. We then took the intersections
of the signature values to determine the function fingerprints, and
subsequently the improvement in precision with and without this
optimization enabled. The rows in Tables 4 and 5 indicate that the
intersection of function signatures from two executions provides
significant savings, and reduces function signature by an average of
9.27% across the five libraries. Further, this optimization decreased
the unmatched nodes by > 95% across the libraries.

6.4 Compiler Optimizations
We run POLLUX against five library test suites dynamically

linked with corresponding libraries compiled with -O2 and -O3

compiler optimizations, and measure its effects on POLLUX’s
precision. Table 6 lists the results. We observe that even across
the two optimization levels, POLLUX retains reasonable precision
for most libraries except zlib. However, it drops significantly
from > 99% (per § 6.2) observed when determining semantic
similarity for binaries with the same optimization level. Note
that -O3 is an aggressive optimization level and includes function
inlining, unswitching loops, among others. Thus, θ = 0.95, which
indicates an error margin of just 5% in similarity, is insufficient
across optimization levels. We therefore need to recalibrate θ for
detecting semantic similarity across optimization levels.

We now briefly compare POLLUX’s effectiveness with
BinDiff [33, 35] and BLEX [34]. Since, BinDiff is a proprietary
tool, and BLEX’s source and binary are unavailable, we use
accuracy numbers available in [34]. Since POLLUX’s signature
matching is ineffective across huge structural changes, it leverages
mechanism as described in § 4.5 to detect semantic similarity
across optimization levels. Table 7 lists tv observed for 10 libraries

Table 6: Effect of compiler optimizations (-O2 v/s -O3) on precision at θ = 0.95.

# Library Version/ # Nodes Unmatched Precision
Commit -O2 -O3 nodes (-O2) (%)

1 http-parser 5651a 72455 72465 1786 97.54
2 json11 afcc8 7803 7855 250 96.80
3 libcurl 7.47.0 2652 2508 1252 52.79
4 Onion 51ceb 699 600 140 79.97
5 zlib 50893 1701 1262 1065 37.39

Table 7: tv for semantically similar binaries across -O0 and -O3 optimizations

# Library Version Avg. Signature Size Signature
tv-O0 -O3 Intersection

1 Capstone d17fc 399613 226594 191841 0.847
2 Eigen 3.2.7 2598 2142 1990 0.929
3 Fit 9e132 30 30 30 1.000
4 http-parser 5651a 758369 442938 428776 0.968
5 json11 afcc8d 78758 10900 10663 0.978
6 libtorrent 508cc 4270 4069 3889 0.956
7 Onion 51ceb 2778 2364 2256 0.954
8 spdlog c6f8f 467 467 467 1.000
9 Valijson e9b50 435678 325634 320004 0.983

10 zlib 50893 1033231 522940 522265 0.999

from our data set across -O0 and -O3 compiler optimization levels.
We observe that POLLUX determines semantic similarity with
96.1% accuracy on average across the 10 libraries. In contrast,
BLEX and BinDiff report an accuracy of ∼50% across the same
optimization levels (per [34]), thereby making POLLUX’s accuracy
comparable to both BLEX and BinDiff.

6.5 Case Studies
(1) json11: json11 is an open-source C++ library from Dropbox.
Commit 0e8c5ba fixes a bug where values like NaN and Infinity

were serialized to non-compliant values by snprintf causing the
deserializer to fail. The fix involved adding a condition which
would return null if the number failed the std::isfinite check.
Even this small fix resulted in an increase in the number of
unmatched nodes, especially in test cases concerning numbers. A
test case traversing the True branch of the conditional had 25 of
286 nodes (or 8.75%) left unmatched in the call graph. In contrast,
the False branch had 11 of 235 nodes (or 4.68%) left unmatched.
We observed that across the entire test suite, 1716 nodes were
generated, of which 125 were unmatched (or 7.28%). Also, a
change in the total number of nodes was observed only for test
cases that executed the changed code path.
(2) zlib: zlib is a hugely popular library used by git, rsync, libpng,
etc. Commit c58f7ab replaced unsafe functions like strcpy with
safer alternatives like snprintf. Such changes, wherein a function
has been replaced results in significantly different memory writes.
For example, the return values of the two functions (although
unused), are totally different. strcpy returns the destination
character array, while snprintf returns the number of bytes
written. Also, unlike strcpy, snprintf appends a NULL byte to
the buffer. POLLUX detects this change and reports 93 out of 1648
nodes (or 5.64%) as unmatched in the graph.
(3) http-parser: HTTP-Parser is a dependent library for NodeJS.
Commit 4e382f9 had only minor changes to the documentation
and did not modify the source code. POLLUX generated a total of
72537 nodes for the entire test suite that match perfectly at θ =
0.95, thereby indicating semantic similarity.
Commit 7d75dd73 introduced support for Zone ID in IPv6 scoped
addresses in the http_parse_host API. Only one test case
(test_parse_url) in the entire test suite invoked this API. This
test case generated a total of 99 nodes of which 2 were unmatched
(2.02%) causing POLLUX to flag the change. For all other test
cases, a total of 72433 nodes were generated that matched perfectly
at θ = 0.95, thereby pin-pointing the modified API.



Commit 0097de changed the way the tokens are parsed by the
library’s http_parser_execute API. Across the test suite, 3
tests did not invoke this API and generated a total of 154 nodes that
matched completely. Further, 6 test cases generated a total of 2337
nodes, 10 of which were left unmatched (0.42%) causing POLLUX
to conclude that they did not traverse the affected code path. Lastly,
2 test cases which traversed the changed code path, generated 6355
nodes, of which 6300 were left unmatched (99.13%) indicating
modifications to the API functionality. Further, decreasing θ to 0.9
caused all nodes to match.
(4) Capstone: Capstone is a disassembly framework popular in
the reverse engineering community. Commit c508c4a0 added
support for the Travis CI build system and did not affect the source
code. POLLUX reported a near perfect match across the entire test
suite. Of the 56076 nodes generated, only 16 were unmatched
(0.03%), indicating a trivial change.
Across a minor release upgrade from v3.0.3 to v3.0.4,seven cases
in the test suite had only 0.76% unmatched nodes indicating
insignificant changes to these modules. The remaining 5 test
cases for the ARM, MIPS, x86 and XCore modules generated
15350 nodes, of which 385 were unmatched (2.51%). All changes
except those in the PowerPC module were correctly detected by
POLLUX. Upon further inspection, we observed that additional
error checking conditions were introduced. However, the test
cases did not traverse this newly introduced code change and thus,
POLLUX reported a false positive for PowerPC.

7. LIMITATIONS AND FUTURE WORK
• POLLUX in its present form cannot handle multi-threaded
interleaved executions. This limitation stems from POLLUX’s
design, which requires deterministic comparison of side-effects
resulting from individual test case executions. In contrast, multi-
threaded executions introduce significant non-determinism in the
set of captured side-effects.
• Since POLLUX leverages test suites for its dynamic binary
analysis, it cannot detect changes in code paths not traversed by
the test case. For example, POLLUX cannot detect bug patches that
comment out an entire code path, such as the OpenSSH bug [15],
where the vulnerable code in the client was completely disabled.
• Like prior work [33–35, 42, 49], POLLUX cannot reliably detect
semantic similarities where side-effects involve use of random
number generators, time of day, etc. However, in our observation,
most of the critical functionalities in mature libraries do not involve
significant use of randomness.
• POLLUX does not include writes to registers or stack in its
function signatures. Thus, it may miss values passed via stack or
when entire function computation leverages registers alone.
• There can be several programmatic ways to encode the desired
functionality. For example, a multiplication operation might be
achieved using repeated additions or just bit shifts. POLLUX in
its present form cannot detect such semantic similarity, since it
leverages side-effects, which could be significantly different for
both mechanisms. In future, we plan to augment POLLUX with
symbolic execution capabilities to detect such semantic similarities.
• POLLUX’s function signature matching is O(n2), and may thus
require significant computation for comparing large graphs with
several hundred thousand nodes. We plan to optimize the algorithm
as part of future work.

8. RELATED WORK

Prior art in binary analysis has primarily focused on security
frameworks for bug/malware detection, and applications of
software similarity for debugging, maintenance and piracy
detection. To our knowledge, POLLUX is the first system that
enables safe upgradation of third-party dependent libraries.
GENERAL PURPOSE PLATFORMS. BitBlaze [46] is a binary
analysis platform that features a combination of static and dynamic
analysis techniques, dynamic symbolic execution, and whole-
system emulation and binary instrumentation. Phoenix [17] is
a similar compiler program analysis environment developed by
Microsoft, but requires debugging information. Thus, unlike
BitBlaze, it is not a binary-only analysis platform. Both BitBlaze
and Phoenix can also be used to detect changes to binary
dependencies. However, they employ heavy machinery to achieve
the desired result. In contrast, POLLUX uses light-weight and
robust dynamic binary analysis techniques.
STATIC ANALYSIS. There exist several static binary analysis
platforms such as BAP [29], CodeSurfer/x86 [26], and
Jakstab [38]. CodeSurfer/x86 and Jakstab first disassemble binary
code, reconstruct call and control flow graphs, and then perform
static analysis over the reconstructed control flow. BAP lifts the
instructions to an intermediate language (IL), and then performs
analysis at the IL level. In contrast, POLLUX leverages dynamic
binary analysis to develop an execution call graph, and examines it
to determine semantic dissimilarities.
DYNAMIC ANALYSIS. POLLUX is most closely related to
BLEX [34], which observes the side effects of function execution
under a controlled randomized environment. Two functions are
deemed similar, if their corresponding side effects are similar.
POLLUX also uses the notion of similarity in side-effects, but
unlike BLEX, does not require any controlled environment. Like
BLEX, POLLUX is also robust to compiler optimizations, but
is significantly more light-weight in its approach. Additionally,
POLLUX, like Zhang et al. [49] and Nagarajan et al. [42], augments
its call graph analysis with features, such as intermediate values, to
fingerprint functions across binaries.
SYMBOLIC ANALYSIS. There are several symbolic execution
frameworks, such as BinHunt [36], Bouncer [32], BitFuzz [31],
FuzzBall [40], and McVeto [48], that operate solely on application
binaries. BinHunt is similar to POLLUX in spirit, and determines
semantic differences in binary programs. However, unlike
POLLUX, which uses dynamic binary analysis, BinHunt detects
semantic similarity using control flow analysis using graph
isomorphism technique, symbolic execution, and theorem proving
mechanisms. Brumley et al. [28] use symbolic mechanisms
to determine whether different implementations of the same
specification are semantically similar or not.
GRAPH ISOMORPHISM. Unlike POLLUX, BinDiff [33, 35] and
BinSlayer [27] use graph isomorphism techniques that performs
extremely well in both correctness and speed if the two binaries are
similar. However, graph isomorphism, in general, does not perform
well when the change between two binaries is large.

9. CONCLUSION
We present the design and implementation of POLLUX, a

framework that leverages relevant application test cases to drive
execution through two versions of the concerned library binary,
records all concrete effects on the environment, and compares them
to determine semantic similarity for the same API invocation across
the two library versions. Our evaluation of POLLUX with 16 open-
source libraries confirms its utility, and also indicates both high
accuracy and precision even in the face of compiler optimizations.
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