
Subodh Sharma | Jan 27, 2026

Introduction to Parallel & 
Distributed Programming
Lec 09—Memory Consistency (Linearisability, Sequential 
Consistency)



RECAP: What is a Memory Consistency Model?

• Set of rules for how memory operations on shared variables become visible 
to different threads in a system. 


• The contract is between the H/w, the compiler and the programmer: 


• The programmer: “I have developed the code with some intuition so that I don’t 
get bugs”


• The Compiler: “I will optimise your code, which means reordering some reads and 
writes differently from the way you programmed it” 


• The Hardware: “I will execute instructions as fast as possible, which may mean 
running them out of order” 



RECAP: Linearisability
Strongest Memory Consistency Model 

• An operation — has a start and has an end!


• It starts with an invocation, and ends with a response


• Rules of Linearisability:  


• Atomicity: Every operations appears to happen instantaneously (between 
invocation & response) 


• Order: If operation A completes before operation B then A must appear to happen 
before operation B in the global history of events


• Correctness: The final outcome must match the sequential version  

• The order is not just logical but also respects real-time 

Write(5)



RECAP: Linearisability
Visualising Linearisability

• Ordering is well-defined; no overlap 

• Imagine a shared register 

• Equivalent Sequential History

Write(5)
Ta

Read(?)
Tb

Read(?)

Write(2)

Write(5)Ta

Read(5)Tb

Read(2)Ta

Write(2)Tb

Valid, linearisable history!



RECAP: Linearisability
Visualising Linearisability

• Ordering is well-defined; no overlap 

• Imagine a shared register 

• Equivalent Sequential History

Write(5)
Ta

Read(?)
Tb

Read(?)

Write(2)

Write(5)Ta

Read(0)Tb

Read(5)Ta

Write(2)Tb

Invalid, nonlinearisable history!



Linearisation Point

• It is the instant where the method takes effect


• Example: For lock-based implementations each method’s critical section can serve as its 
linearisation point


• Let us look at the formalisation of the problem


• History  is a sequence of operation invocation and response events


•  is complete if every invocation in  has a response in 


• complete(H) could be a subsequence of H that matches the above definition


•  is sequential if the first event of  is an invocation and each invocation (except possibly the 
last) is immediately followed by a matching response.  

H

H H H

H H



Linearisability
Realising OR Verifying Linearisability

• CPU cache update latencies may be non-uniform; 


• One would need expensive memory barriers to implement linearisability 


• Network Latency: In distributed systems, this may impact visibility


• Achieving linearisability via consensus such as Paxos or Raft 

• Verification: Hard problem 

• Identify linearisation points


• Show that all possible ordering of linearisation points lead to sequential (valid) 
histories



Linearisation — Formalisation

• History  is well-formed if each thread’s sub-history is sequential


• Let  be a partial order and  be a total order, then 


• 


• Defn (Linearisability):  is linearisable if it has an extension  and there is a 
legal sequential history S, s.t. 


• complete( ) is equivalent to S


•  in  then the same is true in S

H

→ <

x → y ⟹ x < y

H H′￼

H′￼

m0 → m1 H H



Linearisation — Formalisation

• Thm1:  is linearisable if and only if for each object ,  is linearisable


• Proof by induction on the number of operations/method-calls in  (extension of  
with possible response calls)


• Compositionality is important — why?  


• It allows for modular design of concurrent systems 


• Linearisable objects can be verified and implemented in isolation

H x H |x

H′￼ H



Progress Conditions
Linearisability is non-blocking

• A method/operation is wait-free if it guarantees that every call finishes its 
execution in finite number of steps 

• Bounded wait-free: There is an upper-bound in the number of steps


• Being wait-free is an example of a non-blocking progress condition


• Arbitrary and unexpected delay by one thread doesn’t prevent others from 
progressing


• Other progress conditions — lock-free, deadlock-free & starvation-free 
(revist when we discuss synchronisations)



Sequential Consistency
Weaker than Linearisability

• C1: operations should happen in one-at-a-time sequential order


• C2: operations should appear to take effect in program order


• C1 AND C2 define Sequential Consistency 



Sequential Consistency
Weaker than Linearisability

• NOTE: There is no requirement to depend on real global time


• Two possible SC orders to justify the above execution:


•   —>  —>  —>   Ta : q . enq(x) Tb : q . enq(y) Tb : q . deq(x) Ta : q . deq(y)

q.enq(x)
Ta

q.enq(y)
Tb

q.deq(y)

q.deq(x)



Sequential Consistency: Is Linearisable? 
And NOT REAL TIME

• NOTE: There is no requirement to depend on real global time


• SC execution to justify the above result: 


•  —>  —>  Tb : q . enq(y) Ta : q . enq(x) Ta : q . deq(y)

q.enq(x)
Ta

q.enq(y)
Tb

q.deq(y)

This movement not 


possible under linearisability



Sequential Consistent: Is Composable? 
Weaker than Linearisability

• Not hard to see that Queue objects p and q are individually SC


• But the composition is NOT! — WHY? 

q.enq(x)Ta
q.enq(y)

Tb

p.enq(x)

p.enq(y)

p.deq(y)

q.deq(x)



Applying SC in Real Programs

• Threads always see the most recent written values constrained by the thread-
order 

• If read==1 then data has to be 10



Consistency

• Consistency is about global state of the memory (not per-variable)


• Per-variable consistency is coherency! 


• Inconsistencies can arise 


• Due to compiler re-ordering instructions


• Due to N/w or H/w reordering them


• To address inconsistencies


• Use synchronisations 


