Introduction to Parallel &
Distributed Programming

Lec 09—Memory Consistency (Linearisability, Sequential
Consistency)

Subodh Sharma | Jan 27, 2026

RECAP: What is a Memory Consistency Model?

* Set of rules for how memory operations on shared variables become visible
to different threads in a system.

* The contract is between the H/w, the compiler and the programmer:

 The programmer: “| have developed the code with some intuition so that | don’t
get bugs”

 The Compiler: “l will optimise your code, which means reordering some reads and
writes differently from the way you programmed it”

 The Hardware: “| will execute instructions as fast as possible, which may mean
running them out of order”

RECAP: Linearisability

Strongest Memory Consistency Model

* An operation — has a start and has an end!
e [t starts with an invocation, and ends with a response |
Write(5)
 Rules of Linearisability: —e

 Atomicity: Every operations appears to happen instantaneously (between
invocation & response)

* Order: If operation A completes before operation B then A must appear to happen
before operation B in the global history of events

 Correctness: The final outcome must match the sequential version

 The order is not just logical but also respects real-time

RECAP: Linearisability

Visualising Linearisability

Write(5) Read(?)
* Ordering is well-defined; no overlap 1, —e
_ _ Read(?) Write(2)
 Imagine a shared register Tb e

 Equivalent Sequential History

Valid, linearisable history!

I Write(5) 1 Read(2)

—_—e

1, Read(5) T; Write(2)

e

RECAP: Linearisability

Visualising Linearisability

Write(5) Read(?)
* Ordering is well-defined; no overlap 1, —e
_ _ Read(?) Write(2)
 Imagine a shared register Tb e

 Equivalent Sequential History
Invalid, nonlinearisable history!

I’ Read(5)

—_—e

I Write(5)

1, Read(0) 7}, Write(2)

e

Linearisation Point

e [t is the instant where the method takes effect

 Example: For lock-based implementations each method’s critical section can serve as its
linearisation point

* | et us look at the formalisation of the problem
« History H is a sequence of operation invocation and response events

« H is complete if every invocation in H has a response in H

 complete(H) could be a subsequence of H that matches the above definition

« H is sequential if the first event of H is an invocation and each invocation (except possibly the
last) is immediately followed by a matching response.

Linearisability
Realising OR Verifying Linearisability

 CPU cache update latencies may be non-uniform;

* One would need expensive memory barriers to implement linearisability
 Network Latency: In distributed systems, this may impact visibility

* Achieving linearisability via consensus such as Paxos or Raft
e Verification: Hard problem

* |dentify linearisation points

 Show that all possible ordering of linearisation points lead to sequential (valid)
histories

Linearisation — Formalisation

« History H is well-formed if each thread’s sub-history is sequential

 Let — be a partial order and < be a total order, then
* X >y — X<y

» Defn (Linearisability): H is linearisable if it has an extension H' and there is a
legal sequential history S, s.t.

« complete(H) is equivalent to S

e my — my in H then the same is true in SH

Linearisation — Formalisation

« Thm1: H is linearisable if and only if for each object x, H | x is linearisable

 Proof by induction on the number of operations/method-calls in H' (extension of H
with possible response calls)

 Compositionality is important — why?
* |t allows for modular design of concurrent systems

 Linearisable objects can be verified and implemented in isolation

Progress Conditions

Linearisability is non-blocking

A method/operation is wait-free if it guarantees that every call finishes its
execution in finite number of steps
 Bounded wait-free: There is an upper-bound in the number of steps

 Being wait-free is an example of a non-blocking progress condition

* Arbitrary and unexpected delay by one thread doesn’t prevent others from
progressing

* Other progress conditions — lock-free, deadlock-free & starvation-free
(revist when we discuss synchronisations)

Sequential Consistency

Weaker than Linearisability

 C1: operations should happen in one-at-a-time sequential order
o C2: operations should appear to take effect in program order

 C1 AND C2 define Sequential Consistency

“A multiprocessor is sequentially consistent if the result
of any execution is the same as If the operations of all
the processors were executed in some sequential

order, and the operations of each individual processor
appear in this sequence in the order specified by its
program.” [Lamport, 1979]

Sequential Consistency

Weaker than Linearisability

* NOTE: There is no requirement to depend on real global time

g-eng(x) g.deq(y)

T, .
g.enq(y) g.deq(x)
T, e .

* Two possible SC orders to justify the above execution:

e T :qg.enqx) —>T,:q.enq(y) —>1T,:q.deq(x) —> T,: q.deq(y)

Sequential Consistency: Is Linearisable?
And NOT REAL TIME

* NOTE: There is no requirement to depend on real global time

g.enq(x) g.deq(y)

T, i

g.enqg(y)

This movement not
» SC execution to justify the above result: possible under linearisability

e Ty:q.enq(y) —>T,: q.eng(x) —> T, : q.deq(y)

Sequential Consistent: Is Composable?

Weaker than Linearisability

7 P-enqx) enq(x) p.deq(y)

S —— o — o

.enq(y) p.enq(y) .deq(x)

Tb —_0 e —_—

* Not hard to see that Queue objects p and g are individually SC

 But the composition is NOT! — WHY?

Applying SC in Real Programs

initially: ready=0, data=0

thread P thread C

while(!ready);
» pvt = data;

 Threads always see the most recent written values constrained by the thread-
order

e |f read==1 then data has to be 10

Consistency

* Consistency is about global state of the memory (not per-variable)

 Per-variable consistency is coherency!

e |nconsistencies can arise T e A Thread B

(completion)

* Due to compiler re-ordering instructions X l= 5)Out SRS Bl
AN

 Due to N/w or H/w reordering them

e [To address inconsistencies

 Use synchronisations

