Introduction to Parallel &
Distributed Programming

Lec 08 —OpenMP

Subodh Sharma | Jan 23, 2026

(RECAP): Work Sharing Constructs: Sections

 Each thread executes the region #pragma omp parallel
within the section {

_ _ #pragma omp sections
 Each section is executed only

ONCE 1

#pragma omp section
e Good use cases: { compute A(); }

* Pipelined tasks #pragma omp section

* Overlapping I/0 and compute 1 compute_B(); X

 Multimodal streaming tasks #pragma omp section

» Divide-and-conquer { compute_C(); 7’

Work Sharing Constructs: Task

e Thread creates a task and add
to the task pool when

#p ragma Omp task |S i{?pragma omp parallel
enCOuntel‘ed #pragma omp single
» Usually created by one thread Fregna omp Test
in the para”el reglOn printf("Task 1 handled by thread %d\n", omp_get_thread_num());

e
 No implicit barrier at the end

fipragma omp task
S

&

printf("Task 2 handled by thread %d\n", omp_get_thread_num());

5

Examples of Task Parallelism

Linked List Traversal

, #pragma omp parallel
* Traversal by the while Lloop s

» Tasks handle it perfectly Zpragma omp single

e firstprivate (p) while (p) %
#pragma omp task firstprivate(p)

e Creates private copy of the var

for each thread *

process_node(p) ;

e |nitialised with the value from
the master thread

Exercise: Parallelism

Fibonacci int fib(int n) <

int x, Vy;

e Draw the task to thread if (n < 2) return n;
assignment map

pragma omp task shared(x)
x = fib(n - 1);

#pragma omp parallel

< ' pragma omp task shared(y)

y = fib(n - 2);

#pragma omp single

2

result = fib(n): pragma omp taskwait
§ return x + y;

Memory Consistency Models

What is a Memory Consistency Model?

* Set of rules for how memory operations on shared variables become visible
to different threads in a system.

* The contract is between the H/w, the compiler and the programmer:

 The programmer: “| have developed the code with some intuition so that | don’t
get bugs”

 The Compiler: “l will optimise your code, which means reordering some reads and
writes differently from the way you programmed it”

 The Hardware: “| will execute instructions as fast as possible, which may mean
running them out of order”

Linearisability

Strongest Memory Consistency Model

* An operation — has a start and has an end!
e [t starts with an invocation, and ends with a response |
Write(5)
 Rules of Linearisability: —e

 Atomicity: Every operations appears to happen instantaneously (between
invocation & response)

* Order: If operation A completes before operation B then A must appear to happen
before operation B in the global history of events

 Correctness: The final outcome must match the sequential version

 The order is not just logical but also respects real-time

Linearisability

Visualising Linearisability

Write(5) Read(?)
* Ordering is well-defined; no overlap 1, —e
_ _ Read(?) Write(2)
 Imagine a shared register Tb e

 Equivalent Sequential History

Valid, linearisable history!

I Write(5) 1 Read(2)

9

1, Read(5) T; Write(2)

e

Linearisability

Visualising Linearisability

Write(5) Read(?)
* Ordering is well-defined; no overlap 1, —e
_ _ Read(?) Write(2)
 Imagine a shared register Tb e

 Equivalent Sequential History
Invalid, nonlinearisable history!

I’ Read(5)

—_—e

I Write(5)

1, Read(0) 7}, Write(2)

e

Linearisability
Realising OR Verifying Linearisability

 CPU cache update latencies may be non-uniform;

* One would need expensive memory barriers to implement linearisability
 Network Latency: In distributed systems, this may impact visibility

* Achieving linearisability via consensus such as Paxos or Raft
e Verification: Hard problem

* |dentify linearisation points

 Show that all possible ordering of linearisation points lead to sequential (valid)
histories

