
Subodh Sharma | Jan 23, 2026

Introduction to Parallel &
Distributed Programming
Lec 08—OpenMP

• Each thread executes the region
within the section

• Each section is executed only
ONCE

• Good use cases:

• Pipelined tasks

• Overlapping I/O and compute

• Multimodal streaming tasks

• Divide-and-conquer

(RECAP): Work Sharing Constructs: Sections

• Thread creates a task and add
to the task pool when
#pragma omp task is
encountered

• Usually created by one thread
in the parallel region

• No implicit barrier at the end

Work Sharing Constructs: Task

Linked List Traversal

• Traversal by the while loop

• Tasks handle it perfectly

• firstprivate (p)

• Creates private copy of the var
for each thread

• Initialised with the value from
the master thread

Examples of Task Parallelism

Fibonacci

• Draw the task to thread
assignment map

Exercise: Parallelism

Memory Consistency Models

What is a Memory Consistency Model?

• Set of rules for how memory operations on shared variables become visible
to different threads in a system.

• The contract is between the H/w, the compiler and the programmer:

• The programmer: “I have developed the code with some intuition so that I don’t
get bugs”

• The Compiler: “I will optimise your code, which means reordering some reads and
writes differently from the way you programmed it”

• The Hardware: “I will execute instructions as fast as possible, which may mean
running them out of order”

Linearisability
Strongest Memory Consistency Model

• An operation — has a start and has an end!

• It starts with an invocation, and ends with a response

• Rules of Linearisability:

• Atomicity: Every operations appears to happen instantaneously (between
invocation & response)

• Order: If operation A completes before operation B then A must appear to happen
before operation B in the global history of events

• Correctness: The final outcome must match the sequential version

• The order is not just logical but also respects real-time

Write(5)

Linearisability
Visualising Linearisability

• Ordering is well-defined; no overlap

• Imagine a shared register

• Equivalent Sequential History

Write(5)
Ta

Read(?)
Tb

Read(?)

Write(2)

Write(5)Ta

Read(5)Tb

Read(2)Ta

Write(2)Tb

Valid, linearisable history!

Linearisability
Visualising Linearisability

• Ordering is well-defined; no overlap

• Imagine a shared register

• Equivalent Sequential History

Write(5)
Ta

Read(?)
Tb

Read(?)

Write(2)

Write(5)Ta

Read(0)Tb

Read(5)Ta

Write(2)Tb

Invalid, nonlinearisable history!

Linearisability
Realising OR Verifying Linearisability

• CPU cache update latencies may be non-uniform;

• One would need expensive memory barriers to implement linearisability

• Network Latency: In distributed systems, this may impact visibility

• Achieving linearisability via consensus such as Paxos or Raft

• Verification: Hard problem

• Identify linearisation points

• Show that all possible ordering of linearisation points lead to sequential (valid)
histories

