Introduction to Parallel &
Distributed Programming

Lec 07—OpenMP

Subodh Sharma | Jan 20, 2026

Work Sharing Constructs: FOR

Scheduling for iteration space

 \We have already discussed the: #pragma omp for

o Specify the chunk-size — with static the assignment is in round-robin mode

#pragma omp parallel for schedule (static, chunk-size)

{
For (1= 0; i <N; irs) S~
do_stuff(); // ali] += b[il
}

 Dynamic Scheduling: On demand, thread requests chunk-size one finished
with its allotted task

Best for uniform work per iteration and low overhead.

#pragma omp parallel for schedule (dynamic, chunk-size)

{
for (i = 0; i < N; i++) \
do_stuff(); // a[i] += b[1]

1 Higher overhead but better load balance

Work Sharing Constructs: FOR

Reductions

 Reductions avoid races
e Supported operators:
PP P double sum = 0.0,
e + 7. mMin, max #pragma omp parallel for reduction(+:sum)

for (int i = 0: i < N: i++) sum += al[il:

¢ & |, &&, ||

o N

Work Sharing Constructs: Sections

 Each thread executes the region #pragma omp parallel
within the section {

_ _ #pragma omp sections
 Each section is executed only

ONCE 1

#pragma omp section

e Good use cases: { compute_A(); }

* Pipelined tasks

#pragma omp section

* Overlapping I/0 and compute 1 compute_B(); X

 Multimodal streaming tasks #pragma omp section

. . ;
» Divide-and-conquer { compute_C(); ;

Performance Optimisation Tips

#pragma omp parallel for
o _ for (int 1 = 0; 1 < 10: i++) 4
 Must have sufficient parallelism result[i] = i * 2

to mask the parallelism overhead

 Reduce False Sharing — pad

enough bits to separate the cache G iy [PEEteet

lines R R
#pragma omp for nowailt

for (int 1 = 0; 1 < n; i++) {

 Use appropriate scheduling

process_partl(i);

}
 Minimise synchronisation

wherever unnecessary #pragma omp fon

for (int 1 = 0; 1 < n; i++) A

process_part2(i);

h

Performance Optimisation Tips

e Use SIMD Vectorisation

#pragma omp parallel for simd

e Unsafe when:

par
for (Aint 1 = 0; 1 < n:; 1i++) 1

 Loop-carried dependency result[i] = a[i] + b[i] * c[i];
 Aliasing between a,b,c

o Complex branches — prediction #pragma omp paraltltel for collapse(Z)
for (int 1 = 0; 1 < 100; i++) A
for (int § = 0; j < 100: j++) {

« Optimise for loops with collapse matrix[i]1[j] = compute(i, 3);

Performance Optimisation Tips

* Optimise thread count based on

problem size /* transformed 1n to:
for (\,l:,=1; vl:,<n; WZ:,'/':Z) {
* Avoid the use of locks in loops alfi]= b[1] + 1;
c[i] =al[1] + a[1i-1] + b[1-1];
* Unroll loops to avoid loop ali+1]= b[i+1] + 1;
overheads c[i+1] = a[i+1] + a[i] + b[1];
*/

* Avoid memory allocation in a
parallel region

 Use Task Parallel for irregular
applications

