Introduction to Parallel &
Distributed Programming

Lec 13— Mutual Exclusion

Subodh Sharma | Feb 13, 2026




class Bakery implements Lock {
- boolean[] flag;
Bakery Algorithm e
An n thread ME Solution public Bakery (int n) {
flag = new boolean[n];

label = new Label[n];
* Doorway: for (int i = 0; i < n; i++) {
flag[i] = false; label[i] = 0;

o flagl|i] := true — I'am interested

» labelli]... — Take increasing labels
publlic voic

. L flag[i] = true;
Bounded Wait: label[i] = max(label[@], ..,label[n-1])+1;

while (for some k:

* Someone is interested AND has flag[k] && (label[il,i) > (label[k],k));

earlier lex-ordered label

}
, | public void unlock() {
« D, — Dpthen A's label is smaller flag[i] = false;

}
Prove that Bakery Alg is ME-safe!

» B islocked out while flag[A] is true!



publLliC VO1C
flag[i] = true;

Bakery Algorithm label[i] = max(label[@], ..,label[n-1])+1;
_ while (for some k:
Does it guarantee ME? flag[k] &% (label[i],i) > (label[k],k));
}
public void unlock() {
1 T, flag[i] = false;
label[0] = 1
label[1] = 1
flag|1] A (label|1],1) < (label]0],0) flag|O] A (label]0],0) < (1,1)
Enter CS Loop

flag|0] = false
flag|O] A (label]0],0) < (1,1)

Enter CS



Bakery Algorithm

Does it guarantee ME?

* The label assignment is concurrent

« Say P, gets the label 1, P, has not seen it
yet and also gets the label 1.

* |n tie-breaking (1,1) < (1,2)

 Even if threads race, lex-ordering ensures a
total order!

» Say P, getsinto CS§, then (k;,1) < (k,,2)
e For P2 (m2,2) < (ml,l)

e The values of Kk and m need not be same!

class Bakery implements Lock {

boolean|[] flag;

Label[] label;

public Bakery (int n) {

flag = new boolean[n];

label = new Label[n];

for (int 1 =0; 1 < n; i++) {
flag[i] = false; label[i] = 0;

public voic
flag[i] = true;

label[i] = max(label[©@], ..,label[n-1])+1;
while (for some k:

}

flag[k] && (label[i],i) > (label[k],k));

public void unlock() {
flag[li] = false;

}




class Bakery implements Lock {
- boolean[] flag;
Bakery Algorithm e
Does it guarantee ME? public Bakery (int n) {

flag = new boolean[n];
label = new Label[n];

» Lemma 1:if P, has label L. at T, for‘fiint.; ?Cslwiw < rl13bl1+} { N
and PJ- sets its label to Lj at 1/, and agl1] alse; labelll] = @;

15 > 1 then

public volc
flag[i] = true;
label[i] = max(label[©@], ..,label[n-1])+1;
 [emporal ordering implies label while (for some k:

ordering flag[k] && (label[i],i) > (label[k],k));

e (L) > (L D)

}

e Because of SC contraints public void unlock() {
flag[li] = false;

}




class Bakery implements Lock {
- boolean[] flag;
Bakery Algorithm e
Does it guarantee ME? public Bakery (int n) {
flag = new boolean[n];

label = new Label[n];
e Thm1: ME is guaranteed! for (int 1 = 0; i < n; i++) {

. = fal > ] — :
« Proof by contradiction: At 1" both P, P, are in flagli] alse; labell[l] 0;

the CS

- Establish total order between P;, P; label

updates, ie (L;, 1) < (L;, j) assuming T; < T; pubiicC VOl1C
flag[i] = true;
- ForP;inCSat T =F; V(L)) > (L;,1) label[i] = max(label[@], ..,label[n-1])+1;
| | | while (for some k:
» ForFyinCS at T =3 V (L 1) > (L)) flag[k] & (label[i],i) > (label[k],k));
}
»And dy < Ty <d public void unlock() {
« Use the above information to arrive at an flag[i] = false;
Inconsistent predicate: }

(L)) > (L) A (L, J) < (L i)



