
Subodh Sharma | Feb 13, 2026

Introduction to Parallel & 
Distributed Programming
Lec 13— Mutual Exclusion



Bakery Algorithm
An  thread ME Solutionn

• Doorway: 


•  — I’am interested


•  — Take increasing labels


• Bounded Wait: 


• Someone is interested AND has 
earlier lex-ordered label


•  then  label is smaller 


•  is locked out while  is true!

flag[i] := true

label[i]…

DA → DB A′￼s

B flag[A]
Prove that Bakery Alg is ME-safe!



Bakery Algorithm
Does it guarantee ME? 

T0 T1

label[0] = 1

label[1] = 1

f lag[1] ∧ (label[1],1) < (label[0],0)

Enter CS

f lag[0] ∧ (label[0],0) < (1,1)

Loop

f lag[0] = false
flag[0] ∧ (label[0],0) < (1,1)

Enter CS



Bakery Algorithm
Does it guarantee ME? 

• The label assignment is concurrent


• Say  gets the label 1,  has not seen it 
yet and also gets the label 1. 


• In tie-breaking (1,1) < (1,2)


• Even if threads race, lex-ordering ensures a 
total order!


• Say  gets in to , then 


• For : 


• The values of k and m need not be same!

P1 P2

P1 CS1 (k1,1) < (k2,2)

P2 (m2,2) < (m1,1)



Bakery Algorithm
Does it guarantee ME? 

• Lemma 1: if  has label  at  
and  sets its label to  at  and 

 then 


• 


• Temporal ordering implies label 
ordering


• Because of SC contraints

Pi Li T1
Pj Lj T2

T2 > T1

(Lj, j) > (Li, i)



Bakery Algorithm
Does it guarantee ME? 

• Thm1: ME is guaranteed! 


• Proof by contradiction: At  both  are in 
the CS


• Establish total order between  label 
updates, ie  assuming 


• For  in CS at : 


• For  in CS at : 


• And 


• Use the above information to arrive at an 
inconsistent predicate: 

T P1, P2

Pi, Pj
(Li, i) < (Lj, j) Ti < Tj

Pi Tij ¬Fj ∨ (Lj, j) > (Li, i)

Pj Tji ¬Fi ∨ (Li, i) > (Lj, j)

Tij < T ∧ Tji < T

(Lj, j) > (Li, i) ∧ (Lj, j) < (Li, i)


