Introduction to Parallel &
Distributed Programming

Lec 12— Mutual Exclusion

Subodh Sharma | Feb 09, 2026




RECAP: Implementing Lock-free Stack: FAS & CAS

class {

void push (T value){

New Node * new = new Node (value);

Node * old_top = top.load();

do{
new—>next = old_top;

} while(!top.compare_and exchange(old_top,
new) )

size.fetch add(1);



RECAP: Synchronisation

Types of Synchronisation Tools

* Critical sections, Lock, Mutexes: Events should NOT happen together



Peterson Mutual Exclusion Algorithm

» Thread i: announces its oublic void lock() {
INterest :
flag[i] = true;
e Defer to another victim = i;

while (flag[j] && victim == i) {};

e Wait while other Is

interested and thread i is
Interested

}

public void unlock() {
flag[l] = false;

* Unset the flag when no }
longer interested




Peterson Mutual Exclusion Algorithm

Is it correct?

e (flag|B] := true) — (victim := B)

.. bli 1d lock
+ (vietim = A) ~ Rd,(flaglB) — |

Rd,(victim) victim = i;
WO while (flag[j] && victim == i) {};
P ST J
(victim := B) — (victim := A) bublic void unlock() {
» Combining the observations, we Flagli] = false;

observe }
(flag|B] = True) A (victim = A)

. CSy— CS,



Peterson Mutual Exclusion Algorithm

Is it deadlock-free?

 Deadlock-freedom: The system
as a whole progresses

public void lock() {

» At any point one or the other is flag[i] = true;
NOT the victim victim = ji;
while (flag[j] && victim == i) {};
* At least one thread is progressing at }

all times public void unlock() {
flag[i] = false;

}




Peterson Mutual Exclusion Algorithm

Is it starvation-free?

e Starvation-freedom: Each thread

eventually makes progress
Y Prog sublic void lock() {

flag[i] = true;
victim = i;
repeatedly enters CSp while (flag[j] && victim == i) {};

* Thread A is starved only if B

}
public void unlock() {

flag[1] = false;
}

« But can thread B repeatedly enter?

« WHY NOT?




Peterson Mutual Exclusion Algorithm

Does it have bounded-waiting?

 Bounded-waiting: Each thread
makes progress in finite time

public void lock() {

 If thread A starts before thread B ﬂa%[;] = Crue;
victim = J1;
then thread A enters CS before while (flag[i] && victim == i) {};

thread B }

public void unlock() {
flag[1] = false;

}

e But what does start mean?




Peterson Mutual Exclusion Algorithm

Does it have bounded-waiting?

® Llock() is divided into two parts

® Doorway: Always finish in finite steps [HESlcIRXaIRekRe BN TId (@ M|
flag[i] = true;

® Waiting: May take unbounded steps victim = i:
hile (flag[j] && victim == 1 ;
® For threads A and B: }W ile (flag[]] Vietd 1) {3
o I D} — DJ (ie, A's kth doorway public void unlock() {

flag[1] = false;

precede B’s 9th doorway) 1

o Then, CS; — CSj+r) (ie, B

cannot overtake A by more than r
times)



Peterson Mutual Exclusion Algorithm

Does it have bounded-waiting?

e What is the r value for Peterson’s

ME Alg? bublic void lock() {
e Can Peterson’s ME Alg work for flagli] = true;
more than 2 threads? victim = 4; .
while (flag[j] && victim == i) {};
 Can it work under weak memory }
models? public void unlock() {

flag[1] = false;
}




class Bakery implements Lock {
- boolean[] flag;
Bakery Algorithm e
An n thread ME Solution public Bakery (int n) {
flag = new boolean[n];

label = new Label[n];
* Doorway: for (int i = 0; i < n; i++) {
flag[i] = false; label[i] = 0;

o flagl|i] := true — I'am interested

» labelli]... — Take increasing labels
publlic voic

. L flag[i] = true;
Bounded Wait: label[i] = max(label[@], ..,label[n-1])+1;

while (for some k:

* Someone is interested AND has flag[k] && (label[il,i) > (label[k],k));

earlier lex-ordered label

}
, | public void unlock() {
« D, — Dpthen A's label is smaller flag[i] = false;

}
Prove that Bakery Alg is ME-safe!

» B islocked out while flag[A] is true!



