
Subodh Sharma | Feb 09, 2026

Introduction to Parallel &
Distributed Programming
Lec 12— Mutual Exclusion

RECAP: Implementing Lock-free Stack: FAS & CAS

class LockFreeStack{

…

void push (T value){

Node * new = new Node (value);

Node * old_top = top.load();

do{

new->next = old_top;

} while(!top.compare_and_exchange(old_top,
new))

size.fetch_add(1);

}

s0

top

nu1

New

T1 nu2

New

T2
next

RECAP: Synchronisation
Types of Synchronisation Tools

• Memory fences (eg: # pragma omp flush, h/w memory fences like
mfence)

• Atomic Operations: event should happen uninterrupted

• Test & set, Fetch & add, Compare & swap

• Critical sections, Lock, Mutexes: Events should NOT happen together

• Barriers: Events should happen together

• Wait, Condition variables: event A should happen before event B

Peterson Mutual Exclusion Algorithm

• Thread : announces its
interest

• Defer to another

• Wait while other is
interested and thread is
interested

• Unset the flag when no
longer interested

i

i

Peterson Mutual Exclusion Algorithm
Is it correct?

•

•

• WLOG:

• Combining the observations, we
observe

•

(flag[B] := true) → (victim := B)

(victim := A) → RdA(flag[B]) →
RdA(victim)

(victim := B) → (victim := A)

(flag[B] = True) ∧ (victim = A)

CSB → CSA

Peterson Mutual Exclusion Algorithm
Is it deadlock-free?

• Deadlock-freedom: The system
as a whole progresses

• At any point one or the other is
NOT the victim

• At least one thread is progressing at
all times

Peterson Mutual Exclusion Algorithm
Is it starvation-free?

• Starvation-freedom: Each thread
eventually makes progress

• Thread is starved only if
repeatedly enters

• But can thread repeatedly enter?

• WHY NOT?

A B
CSB

B

Peterson Mutual Exclusion Algorithm
Does it have bounded-waiting?

• Bounded-waiting: Each thread
makes progress in finite time

• If thread starts before thread
then thread enters CS before
thread

• But what does start mean?

A B
A

B

Peterson Mutual Exclusion Algorithm
Does it have bounded-waiting?

• lock() is divided into two parts

• Doorway: Always finish in finite steps

• Waiting: May take unbounded steps

• For threads and :

• If (ie, A’s kth doorway
precede B’s 9th doorway)

• Then, (ie,
cannot overtake by more than
times)

A B

Dk
A → Dj

B

CSk
A → CS(

B j + r) B
A r

Peterson Mutual Exclusion Algorithm
Does it have bounded-waiting?

• What is the value for Peterson’s
ME Alg?

• Can Peterson’s ME Alg work for
more than 2 threads?

• Can it work under weak memory
models?

r

Bakery Algorithm
An thread ME Solutionn

• Doorway:

• — I’am interested

• — Take increasing labels

• Bounded Wait:

• Someone is interested AND has
earlier lex-ordered label

• then label is smaller

• is locked out while is true!

flag[i] := true

label[i]…

DA → DB A′￼s

B flag[A]
Prove that Bakery Alg is ME-safe!

