Introduction to Parallel &
Distributed Programming

Lec 11 —Memory Consistency (Causal, Processor),
Synchronisation 1 — Flush & Atomic

Subodh Sharma | Feb 3, 2026

RECAP: Synchronisation

Types of Synchronisation Tools

« Memory fences (eqg: , h/w memory fences like

)

 Atomic Operations: event should happen uninterrupted

 Test & set, Fetch & add, Compare & swap
* Critical sections, Lock, Mutexes: Events should NOT happen together
 Barriers: Events should happen together

 Wait, Condition variables: event A should happen before event B

RECAP: Properties of Synchronisation

e Safety, Liveness

Not lock-based Lock-based

* Blocking Independent of Scheduler Depends on Scheduler

* Starvation-free, Deadlock -y
free, Lock-free, Wait-free Beeltrrrs Wait Free Starvation Free

Someone

Progresses Lock Free Deadlock Free

RECAP: The Flush Operation

* Flush directive performs two primary actions:
* |t forces the thread’s temporary view of the variables to be written back to memory

|t forces the thread to invalidate its local copy and reload vars from the memory

* Flush doesn’t provide atomicity or mutual exclusion

* |t only ensures consistent visibility

RECAP: The Flush Operation

Thread A Thread B

flagA = 1; flagB = 1;
#pragma omp flush #pragma omp flush
f (flagB == 0) { f (flagA == 0) {

shared ++; « mutual exclusion = Sshared++;
i i
flagA = O; flagB = 0O;
#pragma omp flush #pragma omp flush

RECAP: Atomic Operations

Test & Set

 Test-and-Set (TAS): Atomically reads a location and sets it to 1 and returns
the old value

+ Semantics: bool old_value = *location:

*lLocation = true;
return old_valvue;

e Can be used to implement Locks

 Limitations?

RECAP: Atomic Operations

Fetch-and-Add

 FAA - Atomically adds a value to a memory location and returns the old value
o Signature: T fetch_add(T* location, T increment)

 Semantics: |
T old_value = xlLocation;

*Location = old_value + 1ncrement;
return old_value;

 Limitations: No conditional update, Limited to addition, cache line
contention, overflows-underflows

Atomic Operations
Compare & Swap

 CAS: Atomically compares a memory location to an expected value, and if
they match, updates to a new value.

e Signature:

bool compare_and_swap(Tx location, T* expected, T new_value)

: if (*Llocation == *xexpected) A{
e Semantics: |
*Location = new_value;
return true;

} else {

xexpected = *location;

return false;

Atomic Operations
Compare & Swap

 CAS: Atomically compares a memory location to an expected value, and if
they match, updates to a new value.

o Signature:

bool compare_and_swap(Tx location, T* expected, T new_value)

if (*Llocation == *expected) A{
« Semantics: xlocation = new_value;

- return true;
 Primary Use: Lock-free DS

} else {

xexpected = *Llocation;

return ftalse;

Implementing Lock: Using TAS

bool old_value = *location;
*Location = true;

return old_value;

L=1:nop
std::atomic_flag lockV = ATOMIC_FLAG_INIT TASLock mylLock;
void lock(){ void inc(){
while (lockV.test and set()){ myLock. lock();
shared ctr ++;
} void untlock()4 myLock.unlock();
\ lockV.clear(); !

Implementing Lock-free Stack: FAS & CAS

class {

void push (T value){

New Node * new = new Node (value);

Node * old_top = top.load();

do{
new—>next = old_top;

} while(!top.compare_and exchange(old_top,
new))

size.fetch add(1);

RECAP: Synchronisation

Types of Synchronisation Tools

* Critical sections, Lock, Mutexes: Events should NOT happen together

