
Subodh Sharma | Feb 3, 2026

Introduction to Parallel &
Distributed Programming
Lec 11—Memory Consistency (Causal, Processor),
Synchronisation 1 — Flush & Atomic

RECAP: Synchronisation
Types of Synchronisation Tools

• Memory fences (eg: # pragma omp flush, h/w memory fences like
mfence)

• Atomic Operations: event should happen uninterrupted

• Test & set, Fetch & add, Compare & swap

• Critical sections, Lock, Mutexes: Events should NOT happen together

• Barriers: Events should happen together

• Wait, Condition variables: event A should happen before event B

RECAP: Properties of Synchronisation

• Safety, Liveness

• Blocking

• Starvation-free, Deadlock-
free, Lock-free, Wait-free

RECAP: The Flush Operation

• Flush directive performs two primary actions:

• It forces the thread’s temporary view of the variables to be written back to memory

• It forces the thread to invalidate its local copy and reload vars from the memory

• Flush doesn’t provide atomicity or mutual exclusion

• It only ensures consistent visibility

RECAP: The Flush Operation

RECAP: Atomic Operations
Test & Set

• Test-and-Set (TAS): Atomically reads a location and sets it to 1 and returns
the old value

• Semantics:

• Can be used to implement Locks

• Limitations?

RECAP: Atomic Operations
Fetch-and-Add

• FAA - Atomically adds a value to a memory location and returns the old value

• Signature: T fetch_add(T* location, T increment)

• Semantics:

• Limitations: No conditional update, Limited to addition, cache line
contention, overflows-underflows

Atomic Operations
Compare & Swap

• CAS: Atomically compares a memory location to an expected value, and if
they match, updates to a new value.

• Signature:

• Semantics:

Atomic Operations
Compare & Swap

• CAS: Atomically compares a memory location to an expected value, and if
they match, updates to a new value.

• Signature:

• Semantics:

• Primary Use: Lock-free DS

Implementing Lock: Using TAS

std::atomic_flag lockV = ATOMIC_FLAG_INIT

void lock(){

while (lockV.test_and_set()){

// lock was held — so keep spinning!

}

}

s0

L = 1 : nop

s1

[L = 0 : L := 1]

void unlock(){

lockV.clear();

}

TASLock myLock;

void inc(){

myLock.lock();

shared_ctr ++;

myLock.unlock();

}

Implementing Lock-free Stack: FAS & CAS
class LockFreeStack{

…

void push (T value){

Node * new = new Node (value);

Node * old_top = top.load();

do{

new->next = old_top;

} while(!top.compare_and_exchange(old_top,
new))

size.fetch_add(1);

}

s0

top

nu1

New

T1 nu2

New

T2
next

RECAP: Synchronisation
Types of Synchronisation Tools

• Memory fences (eg: # pragma omp flush, h/w memory fences like
mfence)

• Atomic Operations: event should happen uninterrupted

• Test & set, Fetch & add, Compare & swap

• Critical sections, Lock, Mutexes: Events should NOT happen together

• Barriers: Events should happen together

• Wait, Condition variables: event A should happen before event B

