
Subodh Sharma | Feb 2, 2026

Introduction to Parallel &
Distributed Programming
Lec 10—Memory Consistency (Causal, Processor),
Synchronisation 1 — Flush & Atomic

Causal Consistency

• Rules of Happens-Before relation ():

• Thread order: If in a thread, , then

• Reads-from: If a read operation reads the value from a write operation then

• Transitivity

→

a < b a → b

b a
a → b

Causal Consistency

• Rules of causality guarantee:

• Causal Writes: If process P writes to , say , and then some process observes
 and then writes to , say , then

• That is: every process must observe the same order of writes

• Rules of HB hold.

• What is allowed?

x w1
x y w2 w1 → w2

Causal Consistency

Allowed?
• To justify Thread C’s behaviour:

• To justify Thread D’s behaviour:

• Since the two writes are concurrent, different threads can see them take place
in different orders

• CAUSAL CONSISTENT

W(x, b) → R(x, b) → W(x, a) → R(x, a)

W(x, a) → R(x, a) → W(x, b) → R(x, b)

Causal Consistency

Allowed?

• To justify Thread C’s behaviour:

• To justify Thread D’s behaviour:

• But note that ; but thread C violates this order

• NOT CAUSAL CONSISTENT

W(x, b) → R(x, b) → W(x, a) → R(x, a)

W(x, a) → R(x, a) → W(x, b) → R(x, b)

W(x, a) → W(x, b)

Processor Consistency

• Rules:

• Writes by a single processor are observed in the order they were issued

• Writes from different processors to the same location must be seen in the
same order

• Weaker than Causal Consistency - WHY?

T1 T2 T3

W(x,1) R(x,1)

W(y,1)

R(y,1)

R(x,?)

Processor Consistency

• Under PC: Even though , it is not obligated that where

• Which means v = 0/1

• Under Causal Consistency: …

• Which means in ,

R(y,1) R(x, v) v = 1

W(x,1) → R(x,1) → W(y,1)

R(x, v) v = 1

T1 T2 T3

W(x,1) R(x,1)

W(y,1)

R(y,1)

R(x, v)

Processor Consistency

• The execution is Processor Consistent

T1 T2 T3

W(x,1) R(x,2)

W(y,3)

R(y,3)

R(x,1)W(x,2)

Processor Consistency

• The execution is NOT Processor Consistent

T1 T2

W(x,1)

W(y,3)

R(y,3)

R(x,1)W(x,2)

Synchronisation
Types of Synchronisation Tools

• Memory fences (eg: # pragma omp flush, h/w memory fences like
mfence)

• Atomic Operations: event should happen uninterrupted

• Test & set, Fetch & add, Compare & swap

• Critical sections, Lock, Mutexes: Events should NOT happen together

• Barriers: Events should happen together

• Wait, Condition variables: event A should happen before event B

Properties of Synchronisation

• Safety, Liveness

• Blocking

• Starvation-free, Deadlock-
free, Lock-free, Wait-free

The Flush Operation

• Flush directive performs two primary actions:

• It forces the thread’s temporary view of the variables to be written back to memory

• It forces the thread to invalidate its local copy and reload vars from the memory

• Flush doesn’t provide atomicity or mutual exclusion

• It only ensures consistent visibility

The Flush Operation

Atomic Operations
Test & Set

• Test-and-Set (TAS): Atomically reads a location and sets it to 1 and returns
the old value

• Semantics:

• Can be used to implement Locks

• Limitations?

Atomic Operations
Fetch-and-Add

• FAA - Atomically adds a value to a memory location and returns the old value

• Signature: T fetch_add(T* location, T increment)

• Semantics:

• Limitations: No conditional update, Limited to addition, cache line
contention, overflows-underflows

