Introduction to Parallel &
Distributed Programming

Lec 10— Memory Consistency (Causal, Processor),
Synchronisation 1 — Flush & Atomic

Subodh Sharma | Feb 2, 2026

Causal Consistency

 Rules of Happens-Before relation (—):
» Thread order: If in athread, a < b, thena — b

« Reads-from: If a read operation b reads the value from a write operation a then
a— b

 Transitivity

Causal Consistency

* Rules of causality guarantee:

« Causal Writes: If process P writes to x, say wy, and then some process observes
x and then writes to y, say w,, then w; — w,

e That is: every process must observe the same order of writes

e Rules of HB hold.

e What is allowed?

Causal Consistency

thread A thread B thread C thread D
X =a vli=x(b) zl1=x(a)

CONCUIMTBRY =

v2=x(a) z2=x(b) \
Allowed?

 To justify Thread C’s behaviour: W(x, b) — R(x,b) - W(x,a) — R(x, a)

 To justify Thread D’s behaviour: W(x,a) — R(x,a) = W(x,b) — R(x, b)

e Since the two writes are concurrent, different threads can see them take place
In different orders

« CAUSAL CONSISTENT

Causal Consistency

thread A thread B thread C thread D
X = a\ vl = x(a) vli=x(b) zl1=x(a)

v2=x(a) z2=x(b) \
Allowed?

 To justify Thread C’s behaviour: W(x,b) — R(x,b) —» W(x,a) — R(x, a)

 To justify Thread D’s behaviour: W(x,a) — R(x,a) — W(x,b) — R(x, b)

« But note that W(x,a) — W(x, b); but thread C violates this order
 NOT CAUSAL CONSISTENT

Processor Consistency

 Rules:
 Writes by a single processor are observed In the order they were issued

 Writes from different processors to the same location must be seen In the
same order

 Weaker than Causal Consistency - WHY?

1 15 13

Wi(x,1) R(x,1) R(y,1)

W(y,1) R(x,?)

Processor Consistency

T, T, T,
W(x,1) R(x,1) R(y,1)
W(y,1) R(x,v)

» Under PC: Even though R(y,1), it is not obligated that R(x, v) where v = 1
* Which means v = 0/1

« Under Causal Consistency: W(x,1) - R(x,1) — W(y,1) ...

e Which means in R(x,v),v =1

Processor Consistency

T, T, T,
W(x,1) R(x,2) R(»,3)
W(x,2) W(»,3) R(x,1)

e The execution is Processor Consistent

Processor Consistency

T, T,
W(x,1) R(y,3)
W(x,2) R(x,1)
W(y,3)

e The execution is NOT Processor Consistent

Synchronisation

Types of Synchronisation Tools

« Memory fences (eqg: , h/w memory fences like

)

 Atomic Operations: event should happen uninterrupted

 Test & set, Fetch & add, Compare & swap
* Critical sections, Lock, Mutexes: Events should NOT happen together
 Barriers: Events should happen together

 Wait, Condition variables: event A should happen before event B

Properties of Synchronisation

e Safety, Liveness

Not lock-based Lock-based

* Blocking Independent of Scheduler Depends on Scheduler

* Starvation-free, Deadlock -y
free, Lock-free, Wait-free Beeltrrrs Wait Free Starvation Free

Someone

Progresses Lock Free Deadlock Free

The Flush Operation

* Flush directive performs two primary actions:
* |t forces the thread’s temporary view of the variables to be written back to memory

|t forces the thread to invalidate its local copy and reload vars from the memory

* Flush doesn’t provide atomicity or mutual exclusion

* |t only ensures consistent visibility

The Flush Operation

Thread A Thread B

flagA = 1; flagB = 1;
#pragma omp flush #pragma omp flush
f (flagB == 0) { f (flagA == 0) {

shared ++; « mutual exclusion = Sshared++;
i i
flagA = O; flagB = 0O;
#pragma omp flush #pragma omp flush

Atomic Operations
Test & Set

 Test-and-Set (TAS): Atomically reads a location and sets it to 1 and returns
the old value

 Semantics: bool old_value = *location:

xlocation = true;
return old_valvue;

e Can be used to implement Locks

 Limitations?

Atomic Operations
Fetch-and-Add

 FAA - Atomically adds a value to a memory location and returns the old value
o Signature: T fetch_add(T* location, T increment)

 Semantics: |
T old_value = *location;

*Location = old_value + 1ncrement;
return old_value;

 Limitations: No conditional update, Limited to addition, cache line
contention, overflows-underflows

