Introduction to Parallel &
Distributed Programming

Lec 06— OpenMP

Subodh Sharma | Jan 16, 2026

RECAP: Other Synchronisations: Locks

Help achieve orderly access — Mutual Exclusion

omp_init lock(omp_Tlock_ t *x) - Nestable locks are declared with the type
e omp_nest lock_t
omp_set_lock() —- acquires lock
omp_unset_lock() - releases lock
omp_destroy_lock() —free memory

omp_test lock () —setthe lock if available, else return w/o blocking
while(!) {
= omp_test_ lock();

Locks help in achieving race-freedom in accessing critical region

RECAP: What is Mutual Exclusion?

And how is it difference from atomicity?

 Mutual Exclusion: Only one thread
accessing a critical section at any
moment

 How is it different from atomicity?

* Atomicity guarantees that a threads
actions appear as a single indivisible step
to other threads

 Food for thought — Does atomicity
imply mutual exclusion? Or the other
way around?

Shared balances (vault)

guarded by LOCK

critical section
balance® —= 1;

balancel += 1;

Other Synchronisations: Critical

* Critical directive: makes the runtime execute the associated region of code
only by one thread at a time.

VAR NN

~"MVSAAAAAANANNNNANAAAAAANANNY

L

 Example: Sum of array elements

Other Synchronisations: Atomic

 Atomic directive: runtime ensures that the memory location is updated
atomically by only one thread at a time.

#pragma omp atomic
sum += sumlLocal ;

|

 Example: Sum of array elements

Work Sharing Constructs: FOR

Scheduling for iteration space

 \We have already discussed the: #pragma omp for

o Specify the chunk-size — with static the assignment is in round-robin mode

#pragma omp parallel for schedule (static, chunk-size)

{
For (1= 0; i <N; irs) S~
do_stuff(); // ali] += b[il
}

 Dynamic Scheduling: On demand, thread requests chunk-size one finished
with its allotted task

Best for uniform work per iteration and low overhead.

#pragma omp parallel for schedule (dynamic, chunk-size)

{
for (i = 0; i < N; i++) \
do_stuff(); // a[i] += b[1]

1 Higher overhead but better load balance

Work Sharing Constructs: FOR

Reductions

 Reductions avoid races
e Supported operators:
PP P double sum = 0.0,
e + 7. mMin, max #pragma omp parallel for reduction(+:sum)

for (int i = 0: i < N: i++) sum += al[il:

¢ & |, &&, ||

o N

Work Sharing Constructs: Sections

 Each thread executes the region #pragma omp parallel
within the section {

_ _ #pragma omp sections
 Each section is expected only

ONCE 1

#pragma omp section

e Good use cases: { compute_A(); }

* Pipelined tasks

#pragma omp section

* Overlapping I/0 and compute 1 compute_B(); X

 Multimodal streaming tasks #pragma omp section

. . ;
» Divide-and-conquer { compute_C(); ;

