
Subodh Sharma | Jan 16, 2026

Introduction to Parallel &
Distributed Programming
Lec 06—OpenMP

RECAP: Other Synchronisations: Locks
Help achieve orderly access — Mutual Exclusion

• omp_init_lock(omp_lock_t *) - Nestable locks are declared with the type

• omp_nest_lock_t

• omp_set_lock() –- acquires lock

• omp_unset_lock() – releases lock

• omp_destroy_lock() – free memory

• omp_test_lock () – set the lock if available, else return w/o blocking

while(!flag) {

 flag = omp_test_lock();

}

Locks help in achieving race-freedom in accessing critical region

RECAP: What is Mutual Exclusion?
And how is it difference from atomicity?

• Mutual Exclusion: Only one thread
accessing a critical section at any
moment

• How is it different from atomicity?

• Atomicity guarantees that a threads
actions appear as a single indivisible step
to other threads

• Food for thought — Does atomicity
imply mutual exclusion? Or the other
way around?

Other Synchronisations: Critical

• Critical directive: makes the runtime execute the associated region of code
only by one thread at a time.

• Example: Sum of array elements

Other Synchronisations: Atomic

• Atomic directive: runtime ensures that the memory location is updated
atomically by only one thread at a time.

• Example: Sum of array elements

Work Sharing Constructs: FOR

• We have already discussed the: #pragma omp for

• Specify the chunk-size — with static the assignment is in round-robin mode

• Dynamic Scheduling: On demand, thread requests chunk-size one finished
with its allotted task

Scheduling for iteration space

Best for uniform work per iteration and low overhead.

Higher overhead but better load balance

Reductions

• Reductions avoid races

• Supported operators:

• +, *, min, max

• &, |, &&, ||

• ^

Work Sharing Constructs: FOR

• Each thread executes the region
within the section

• Each section is expected only
ONCE

• Good use cases:

• Pipelined tasks

• Overlapping I/O and compute

• Multimodal streaming tasks

• Divide-and-conquer

Work Sharing Constructs: Sections

