Introduction to Parallel &
Distributed Programming

Lec 05—Shared Memory Programming

Subodh Sharma | Jan 13, 2026




Recap

« OpenMP primitives - parallel, shared, private



More on OpenMP

Thread control divergence

* |Introducing thread- int main OOf
Id specific control . .
flow int numt, tid ;

#pragma omp parallel private(tid) {

tid = omp_get_thread _num();
1f (tid == 0)
numt = omp_get_num_threads();
Alternate way: }
#pragma omp single nowait
{

numt = omp_get_num_threads();
} // implicit barrier




More on OpenMP

Use of explicit barriers as synchronisation

int main O1

 Barrier — o
synchronisation LIE Ume, 24 ;
prlmlltlve for data #pragma omp parallel shared (humt) private(tid)
consistency and {

ordered execution tid = omp_get_thread _num();
: \ 1f(tid == @) numt = omp_get_num_threads();
e Semantics: No

thread can advance #pragma omp barrier

beyond the barrier printf(“hello world %d of %d\n”, tid,
point until all have

arrived

numt) ;




Other Synchronisations: Locks

Help achieve orderly access — Mutual Exclusion

omp_init lock(omp_Tlock_ t *x) - Nestable locks are declared with the type
e omp_nest lock_t
omp_set_lock() —- acquires lock
omp_unset_lock() - releases lock
omp_destroy_lock() —free memory

omp_test lock () —setthe lock if available, else return w/o blocking
while(! ) {
= omp_test_ lock();

Locks help in achieving race-freedom in accessing critical region



What is Mutual Exclusion?

And how is it difference from atomicity?

 Mutual Exclusion: Only one thread
accessing a critical section at any
moment

 How is it different from atomicity?

* Atomicity guarantees that a threads
actions appear as a single indivisible step
to other threads

 Food for thought — Does atomicity
imply mutual exclusion? Or the other
way around?

Shared balances (vault)

critical section
balance® —= 1;

balancel += 1;

guarded by LOCK




Other Synchronisations: Critical

* Critical directive: makes the runtime execute the associated region of code
only by one thread at a time.

VAR NN

~"MVSAAAAAANANNNNANAAAAAANANNY

L

 Example: Sum of array elements



Other Synchronisations: Atomic

 Atomic directive: runtime ensures that the memory location is updated
atomically by only one thread at a time.

 Example: Sum of array elements



