
Subodh Sharma | Jan 13, 2026

Introduction to Parallel &
Distributed Programming
Lec 05—Shared Memory Programming

Recap
• OpenMP primitives - parallel, shared, private

More on OpenMP
Thread control divergence

• Introducing thread-
id specific control
flow

Alternate way:
nowait

More on OpenMP
Use of explicit barriers as synchronisation

• Barrier —
synchronisation
primitive for data
consistency and
ordered execution

• Semantics: No
thread can advance
beyond the barrier
point until all have
arrived

Other Synchronisations: Locks
Help achieve orderly access — Mutual Exclusion

• omp_init_lock(omp_lock_t *) - Nestable locks are declared with the type

• omp_nest_lock_t

• omp_set_lock() –- acquires lock

• omp_unset_lock() – releases lock

• omp_destroy_lock() – free memory

• omp_test_lock () – set the lock if available, else return w/o blocking

while(!flag) {

 flag = omp_test_lock();

}

Locks help in achieving race-freedom in accessing critical region

What is Mutual Exclusion?
And how is it difference from atomicity?

• Mutual Exclusion: Only one thread
accessing a critical section at any
moment

• How is it different from atomicity?

• Atomicity guarantees that a threads
actions appear as a single indivisible step
to other threads

• Food for thought — Does atomicity
imply mutual exclusion? Or the other
way around?

Other Synchronisations: Critical

• Critical directive: makes the runtime execute the associated region of code
only by one thread at a time.

• Example: Sum of array elements

Other Synchronisations: Atomic

• Atomic directive: runtime ensures that the memory location is updated
atomically by only one thread at a time.

• Example: Sum of array elements

