
Subodh Sharma (a.k.a SVS) | Jan 05, 2026

Introduction to Parallel &
Distributed Programming
Lec 02— Unbundling OS and Architecture

Course Logistics
• COL 331 is a co-requisite

• Those who drop COL331 will be de-registered from COL380 at the end of the add-
drop period

• Course Discussion: Piazza

• Course Webpage: https://subodhvsharma.github.io/course/col380

• Audits: Not allowed

• Attendace: RollCall (htpps://rollcall.iitd.ac.in)

• 75% pre-minor required for reminor, 75% in semester for remajor

https://subodhvsharma.github.io/
http://rollcall.iitd.ac.in

Transcribing — Begins from this class!

• Drafting of the entire lecture content in Latex

• Key learning outcomes for that content

• Key takeaways (5-10 bullet items)

• In 2 to 3 examples to motivate the topical discussion

• Comprehensive references

• 4-8 problems and their solutions

Recap
• Concurrency vs Parallelism vs Distributed

• Concurrency in Hardware

• Single Cores — Instruction pipelining

• Superpipelined processors — Superscalar pipelines

• I1: load R1, @1000; I2: Add R1, @1004. Can I1 and I2 be simultaneously
issued?

• Q: When can an instruction scheduler truly exploit pipelined parallelism?

• Multicores - Multiple instruction execution streams

Process

• Process is a program under execution

• code.cpp —> gcc code.cpp -o exe —> ./exe

• Code segment: Read-only storage for code instr

• Data segment: Global and static vars

• Heap: Dynamic memory allocation area

• Stack: Function parameters, return address, local vars

OS Managing Processes

• PC (program counter) holds
the address of the next
instruction to be executed

• Multiple processes: OS manages
them via context-switching

• Context: PC, Process state,
Register values, Ptrs to Page
Tables, I/O devices allocated …

• PCB: OS saves the PCB of one
process and makes a context
switch to another

Thread

• Threads have their own stack but share the
code, data and heap segments

• Thread Control Block (TCB): Has much smaller
memory footprint (don’t have to same entire
memory maps)

• TCB is used for context switching

OS Managing Threads

• Each User thread is mapped to a Kernel thread (mapping can be one-2-one or many-2-many)

• Kernel threads are mapped to physical cores;

Memory Management
How is instruction executed?

• Instr: a[i] —> tmp; Memory access is much slower; Caches are small

Caches
UMA vs NUMA

• Caches help exploit temporal
and spatial locality of references

• Two types:

• UMA: Uniform memory access

• NUMA: Non-uniform memory
access

• Accessing memory stores on
different NUMA nodes may result
in variable access times

Cache Line Granularity & Coherence

• Cache line: Typically 64 Bytes

• Granularity Rule: When you ask for an integer, CPU fetches the entire line that
contains that integer. (Spatial Locality)

• Coherence: A h/w protocol that ensures all cores agree on the value of a
piece of data

•

False Sharing
The Ping-Pong Effect

Var x Var y

• Repeated cache line invalidation

• Main memory access is slow

• Severe performance degradation

• FIX: Pad the cache lines

