Introduction to Parallel &
Distributed Programming

Lec 02— Unbundling OS and Architecture

Subodh Sharma (a.k.a SVS) | Jan 05, 2026

Course Logistics

e COL 331 is a co-requisite

 Those who drop COL331 will be de-registered from COL380 at the end of the add-
drop period

e Course Discussion: Piazza

e Course Webpage: https://subodhvsharma.github.io/course/col380

 Audits: Not allowed

» Attendace: RollCall (htpps://rollcall.iitd.ac.in)

e /5% pre-minor required for reminor, /5% in semester for remajor

https://subodhvsharma.github.io/
http://rollcall.iitd.ac.in

Transcribing — Begins from this class!

* Drafting of the entire lecture content in Latex
 Key learning outcomes for that content
o Key takeaways (5-10 bullet items)
* |n 2 to 3 examples to motivate the topical discussion
« Comprehensive references

* 4-8 problems and their solutions

Recap

* Concurrency vs Parallelism vs Distributed
* Concurrency in Hardware
 Single Cores — Instruction pipelining

* Superpipelined processors — Superscalar pipelines

e [1: load R1l, @1000; 12: Add R1l, @1004. Can I1 and I2 be simultaneously
issued?

 Q: When can an instruction scheduler truly exploit pipelined parallelism?

 Multicores - Multiple instruction execution streams

Process

Process Memory Layout

 Process is a program under execution Stack
« code.cpp —> gcc code.cpp -0 exe —> ./exe v
 Code segment: Read-only storage for code instr H;p
 Data segment: Global and static vars Dats
 Heap: Dynamic memory allocation area Code

o Stack: Function parameters, return address, local vars

OS Managing Processes

 PC (program counter) holds
the address of the next
Instruction to be executed

* Multiple processes: OS manages
them via context-switching

 Context: PC, Process state,
Register values, Ptrs to Page
Tables, I/0O devices allocated ...

e PCB: OS saves the PCB of one
process and makes a context
switch to another

OS Context Switching between Processes

Process A

Y

Program Counter

|
|
Y

OS
Context

Switch

PC

i

Stack Process B
1 CPU
Heap
Program Counter
Data | _F;f
SotlcHE- - - ------- - -- l

Thread

Multi-threaded Process Memory Layout

 Threads have their own stack but share the Stack (Thread 1)
code, data and heap segments

Stack (Thread 2)

 Thread Control Block (TCB): Has much smaller Stack (Thread 3)
memory footprint (don’t have to same entire
memory maps)

Free Memory

Heap
 TCB is used for context switching Data

Code

OS Managing Threads

Process

User Thread 1

Operating System Kernel

»| Kernel Thread 1

User Thread 2

»| Kernel Thread 2

User Thread 3

» Kernel Thread 3

CPU Core 1

Kernel L1/L2
Thread 1 Cache

CPU Core 2

Kernel L1/L2
Thread 2 Cache

Shared
L3
Cache

Main
Memory

 Each User thread is mapped to a Kernel thread (mapping can be one-2-one or many-2-many)

* Kernel threads are mapped to physical cores;

Memory Management

How is instruction executed?

Virtual Memory Physical RAM

Instruction pipeline TLB
ar (Translation LB Lookup

Lookaside Buffer) 3. Update

Page Table 1 Find

Free Page
Frame

Page frame
movss (%rdi,%rax,4),%xmmd L1 Page TR
Cache Table movss (%rdi,%rax,4),%xmm -
Walker age frame

4. Return from 2. Disk I/0:
Interrupt Read Page

User Mode ear M e from Swap

e Instr: a[1] —> tmp; Memory access is much slower; Caches are small

Caches
UMA vs NUMA

 Caches help exploit temporal
and spatial locality of references

* [wo types:
 UMA: Uniform memory access

 NUMA: Non-uniform memory
access

* Accessing memory stores on
different NUMA nodes may result
In variable access times

NUMA

(Non-Uniform Memory Access)

o

CPU

Local Cache Z22

-
\
e
-
1

) 1

1

Local Memory &k& 15
ry 1

1

«._ Slower Access

UMA

(Uniform Memory Access)

Remote
Memory

@igh-Speed Interconnect >—
3 1

Local Memory

CPU

Local Cache &

Local Cache

Remote
Memory

Remote Memory
(Slower)

!

!

Shared Cache

Unified Memory

Shared Cache

Unified Memory

Cache Line Granularity & Coherence

 Cache line: Typically 64 Bytes

 Granularity Rule: When you ask for an integer, CPU fetches the entire line that
contains that integer. (Spatial Locality)

 Coherence: A h/w protocol that ensures all cores agree on the value of a
piece of data

False Sharing

False Sharing

The Ping-Pong Effect

Core 1 Core 2
57‘7 D /%7 2\
X} —/ /{ Thread A increments X PIE;:c?tng L2 cache p":z?f-epgtng Pnggf;ct)ng
Y // Thread B increments vy Mr:;lgry
} Counters;

Counters ¢c; // x and y likely on same cache

 Repeated cache line invalidation
// Thread A:

(i=0; 1< N; i++) C.x++; « Main memory access is slow

// Thread B: » Severe performance degradation

(| ; 1 < Nj; i++) C.y++;

e FIX: Pad the cache lines

