
Subodh Sharma (a.k.a SVS) | Jan 02, 2026

Introduction to Parallel &
Distributed Programming
Lec 01 — Course Logistics, Introduction

Course Logistics

Course Logistics
• COL 331 is a co-requisite

https://subodhvsharma.github.io/
http://rollcall.iitd.ac.in

Course Logistics
• COL 331 is a co-requisite

• Those who drop COL331 will be de-registered from COL380 at the end of the add-
drop period

https://subodhvsharma.github.io/
http://rollcall.iitd.ac.in

Course Logistics
• COL 331 is a co-requisite

• Those who drop COL331 will be de-registered from COL380 at the end of the add-
drop period

• Course Discussion: Piazza

https://subodhvsharma.github.io/
http://rollcall.iitd.ac.in

Course Logistics
• COL 331 is a co-requisite

• Those who drop COL331 will be de-registered from COL380 at the end of the add-
drop period

• Course Discussion: Piazza

• Course Webpage: https://subodhvsharma.github.io/course/col380

https://subodhvsharma.github.io/
http://rollcall.iitd.ac.in

Course Logistics
• COL 331 is a co-requisite

• Those who drop COL331 will be de-registered from COL380 at the end of the add-
drop period

• Course Discussion: Piazza

• Course Webpage: https://subodhvsharma.github.io/course/col380

• Audits: Not allowed

https://subodhvsharma.github.io/
http://rollcall.iitd.ac.in

Course Logistics
• COL 331 is a co-requisite

• Those who drop COL331 will be de-registered from COL380 at the end of the add-
drop period

• Course Discussion: Piazza

• Course Webpage: https://subodhvsharma.github.io/course/col380

• Audits: Not allowed

• Attendace: RollCall (htpps://rollcall.iitd.ac.in)

https://subodhvsharma.github.io/
http://rollcall.iitd.ac.in

Course Logistics
• COL 331 is a co-requisite

• Those who drop COL331 will be de-registered from COL380 at the end of the add-
drop period

• Course Discussion: Piazza

• Course Webpage: https://subodhvsharma.github.io/course/col380

• Audits: Not allowed

• Attendace: RollCall (htpps://rollcall.iitd.ac.in)

• 75% pre-minor required for reminor, 75% in semester for remajor

https://subodhvsharma.github.io/
http://rollcall.iitd.ac.in

Course Logistics
• COL 331 is a co-requisite

• Those who drop COL331 will be de-registered from COL380 at the end of the add-
drop period

• Course Discussion: Piazza

• Course Webpage: https://subodhvsharma.github.io/course/col380

• Audits: Not allowed

• Attendace: RollCall (htpps://rollcall.iitd.ac.in)

• 75% pre-minor required for reminor, 75% in semester for remajor

• 4 Lab Assignments, 2 In-class Quizzes, 1 Lab Exam, Minor, Major; Additional
task — Transcribing!

https://subodhvsharma.github.io/
http://rollcall.iitd.ac.in

Transcribing — Begins from the Next Class!

• Drafting of the entire lecture content in Latex

• Key learning outcomes for that content

• Key takeaways (5-10 bullet items)

• In 2 to 3 examples to motivate the topical discussion

• Comprehensive references

• 4-8 problems and their solutions

Academic Dishonesty

Academic Dishonesty
• Any act of academic dishonesty will lead to the following:

Academic Dishonesty
• Any act of academic dishonesty will lead to the following:

• Negative marks of the total of that evaluation task would be applied

Academic Dishonesty
• Any act of academic dishonesty will lead to the following:

• Negative marks of the total of that evaluation task would be applied

• 1 letter grade drop

Academic Dishonesty
• Any act of academic dishonesty will lead to the following:

• Negative marks of the total of that evaluation task would be applied

• 1 letter grade drop

• For Grade 1 offence — (cheating in assessments other than midsem/major)

Academic Dishonesty
• Any act of academic dishonesty will lead to the following:

• Negative marks of the total of that evaluation task would be applied

• 1 letter grade drop

• For Grade 1 offence — (cheating in assessments other than midsem/major)

• Departmental DISCO (the list of penalties will be available soon)

Academic Dishonesty
• Any act of academic dishonesty will lead to the following:

• Negative marks of the total of that evaluation task would be applied

• 1 letter grade drop

• For Grade 1 offence — (cheating in assessments other than midsem/major)

• Departmental DISCO (the list of penalties will be available soon)

• Such as — Debarred from OCS placements and Internship etc.

Academic Dishonesty
• Any act of academic dishonesty will lead to the following:

• Negative marks of the total of that evaluation task would be applied

• 1 letter grade drop

• For Grade 1 offence — (cheating in assessments other than midsem/major)

• Departmental DISCO (the list of penalties will be available soon)

• Such as — Debarred from OCS placements and Internship etc.

• For Grade 2 & 3 offence - (in midsem/major)

Academic Dishonesty
• Any act of academic dishonesty will lead to the following:

• Negative marks of the total of that evaluation task would be applied

• 1 letter grade drop

• For Grade 1 offence — (cheating in assessments other than midsem/major)

• Departmental DISCO (the list of penalties will be available soon)

• Such as — Debarred from OCS placements and Internship etc.

• For Grade 2 & 3 offence - (in midsem/major)

• Institute DISCO

About the Course

About the Course
• Learning Goals:

About the Course
• Learning Goals:

• Write correct and efficient parallel programs; Programming Models

About the Course
• Learning Goals:

• Write correct and efficient parallel programs; Programming Models

• OpenMP, CUDA, MPI; Profilers and Debuggers

About the Course
• Learning Goals:

• Write correct and efficient parallel programs; Programming Models

• OpenMP, CUDA, MPI; Profilers and Debuggers

• Measure parallel performance and analyse correctness

About the Course
• Learning Goals:

• Write correct and efficient parallel programs; Programming Models

• OpenMP, CUDA, MPI; Profilers and Debuggers

• Measure parallel performance and analyse correctness

• Cost and Performance models

About the Course
• Learning Goals:

• Write correct and efficient parallel programs; Programming Models

• OpenMP, CUDA, MPI; Profilers and Debuggers

• Measure parallel performance and analyse correctness

• Cost and Performance models

• Exposure to parallel algorithms and data structures

About the Course
• Learning Goals:

• Write correct and efficient parallel programs; Programming Models

• OpenMP, CUDA, MPI; Profilers and Debuggers

• Measure parallel performance and analyse correctness

• Cost and Performance models

• Exposure to parallel algorithms and data structures

• Map-reduce, fork-join, …

About the Course
• Learning Goals:

• Write correct and efficient parallel programs; Programming Models

• OpenMP, CUDA, MPI; Profilers and Debuggers

• Measure parallel performance and analyse correctness

• Cost and Performance models

• Exposure to parallel algorithms and data structures

• Map-reduce, fork-join, …

• Common distributed systems concepts

About the Course
• Learning Goals:

• Write correct and efficient parallel programs; Programming Models

• OpenMP, CUDA, MPI; Profilers and Debuggers

• Measure parallel performance and analyse correctness

• Cost and Performance models

• Exposure to parallel algorithms and data structures

• Map-reduce, fork-join, …

• Common distributed systems concepts

• Synchronisations, Logical clocks, Consensus,

Setting Expectations

Setting Expectations
• Be regular in attending classes

Setting Expectations
• Be regular in attending classes

• Come prepared reading the supplementary material

Setting Expectations
• Be regular in attending classes

• Come prepared reading the supplementary material

• Program regularly and on your own

Setting Expectations
• Be regular in attending classes

• Come prepared reading the supplementary material

• Program regularly and on your own

• Speak to me — I don’t bite!

Setting Expectations
• Be regular in attending classes

• Come prepared reading the supplementary material

• Program regularly and on your own

• Speak to me — I don’t bite!

• Check regularly Moodle and Piazza

Setting Expectations
• Be regular in attending classes

• Come prepared reading the supplementary material

• Program regularly and on your own

• Speak to me — I don’t bite!

• Check regularly Moodle and Piazza

• It’s a 2-0-2 course, but felt like 2-0-6 — deal with it and learn to start early!

Parallel, Distributed, Concurrency
Terms to be used frequently

Parallel, Distributed, Concurrency
Terms to be used frequently

• Concurrency: Multiple task in progress
simultaneously

• Parallelism: Concurrency but in close
coordination

• Eg: Matrix multiplication: Threads may
share the same shared memory arrays

• Distributed: Concurrency but loosely
coupled

Parallel, Distributed, Concurrency
Terms to be used frequently

• Concurrency: Multiple task in progress
simultaneously

• Parallelism: Concurrency but in close
coordination

• Eg: Matrix multiplication: Threads may
share the same shared memory arrays

• Distributed: Concurrency but loosely
coupled

Parallel, Distributed, Concurrency
Terms to be used frequently

• Concurrency: Multiple task in progress
simultaneously

• Parallelism: Concurrency but in close
coordination

• Eg: Matrix multiplication: Threads may
share the same shared memory arrays

• Distributed: Concurrency but loosely
coupled

https://www.youtube.com/watch?v=X0sE10zUYyY

Need for Concurrency in Computing

Courtesy: Nano Banana

Need for Concurrency in Computing

• P ∝ V2 . f

Courtesy: Nano Banana

Need for Concurrency in Computing

• P ∝ V2 . f

• Faster processors => Higher power
consumption => Higher heat
dissipation => Unreliable
processors

Courtesy: Nano Banana

Need for Concurrency in Computing

• P ∝ V2 . f

• Faster processors => Higher power
consumption => Higher heat
dissipation => Unreliable
processors

Courtesy: Nano Banana

Need for Concurrency in Computing

• P ∝ V2 . f

• Faster processors => Higher power
consumption => Higher heat
dissipation => Unreliable
processors

• The V/F curve: For , the
physics break down, even to get a
jump of 100 MHz, large jump in
voltage is required

f ≥ 5Ghz

Courtesy: Nano Banana

Concurrency in Hardware

Concurrency in Hardware

Concurrency in Hardware
• Observe:

Concurrency in Hardware
• Observe:

• Multiple cores (each with their own L2
cache)

Concurrency in Hardware
• Observe:

• Multiple cores (each with their own L2
cache)

• Executing many tasks simultaneously

Concurrency in Hardware
• Observe:

• Multiple cores (each with their own L2
cache)

• Executing many tasks simultaneously

• Usually work with slower clock but faster
interconnects

Concurrency in Hardware
• Observe:

• Multiple cores (each with their own L2
cache)

• Executing many tasks simultaneously

• Usually work with slower clock but faster
interconnects

• All cores share L3 cache

Concurrency in Hardware
• Observe:

• Multiple cores (each with their own L2
cache)

• Executing many tasks simultaneously

• Usually work with slower clock but faster
interconnects

• All cores share L3 cache

• Each core is superscalar

Concurrency in Hardware
• Observe:

• Multiple cores (each with their own L2
cache)

• Executing many tasks simultaneously

• Usually work with slower clock but faster
interconnects

• All cores share L3 cache

• Each core is superscalar

• What does it mean? We will have to look at
how a core is set-up!

Concurrency in Hardware
Superscalar Architectures

• In single cores — pipelining of
Instruction execution

• Key take-away - parallelism due to
staged execution

• Superscalar:

• Multiple instruction streams

Concurrency in Hardware
MultiCore Architectures

• Multiple cores

• Each core may be superscalar

• Complex:

• DMA/Memory Controllers

• Memory coherence & consistency

Concurrency in Software (User Programs)

Concurrency in Software (User Programs)

void multi_transform(int *input, int *out1, int *out2, int *out3, int n)
 {

for (int i = 0; i < n; i++) {
out1[i] = input[i] * 2; // Double
out2[i] = input[i] + 100; // Shift
out3[i] = input[i] * input[i]; // Square

 }
 }

Concurrency in Software (User Programs)

void multi_transform(int *input, int *out1, int *out2, int *out3, int n)
 {

for (int i = 0; i < n; i++) {
out1[i] = input[i] * 2; // Double
out2[i] = input[i] + 100; // Shift
out3[i] = input[i] * input[i]; // Square

 }
 }

• Can execute each loop instruction in parallel — Why?

Concurrency in Software (User Programs)

void multi_transform(int *input, int *out1, int *out2, int *out3, int n)
 {

for (int i = 0; i < n; i++) {
out1[i] = input[i] * 2; // Double
out2[i] = input[i] + 100; // Shift
out3[i] = input[i] * input[i]; // Square

 }
 }

• Can execute each loop instruction in parallel — Why?

• Could also be vectorized on a single-core machine

