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History Trivia

Language, Recursion, Transformation: The earliest use of
“formalized” grammar was by Panini (5th century BC) in
Ashtadhyayi.

Computers and Programs:

1 mechanical calculators started with Pascal and refined by
Leibniz. Refer to Pascal’s calculator and Leibniz’s digital
arithmometer!

2 The first forms of a general purpose computer: the analytical
engine in 1837 by Charles Babbage. It was only a design!

3 First general purpose computer by Konrad Zuse in 1941, called
Z3.

4 Ada Lovelace wrote the first computer program to calculate
Bernoulli numbers using the description of Babbage’s machine.
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Last Lecture’s Summary

What is computing?

What are computing tools?
What are the essential aspects of a computational process?
What are algorithms, programming languages and
programs?
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Computing Model:Programming Models

Types of Programming Models:
Functional: A program is specified as amathematical
expression.

Imperative: A program is specified by a sequence of
commands.

Various programming languages support the above models.
Python is an imperative PL. However, we will use it to understand
both the programming models.
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Programming Models: Primitive Expressions

The simplest objects and operations in the computing model.
These include

Basic data elements: numbers, characters, boolean, etc.

Basic operations: addition, subtraction, multiplication, string
operations, etc.
Naming mechanism: Named expressions to be used
without repetition
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Programming Models: Combination and Abstraction

Combination: Composition of functions, Inductive
definitions, etc.

Abstraction: Named functions, data structures, classes,
modules, etc.
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Functional Programming:Factorial

Mathematical Definition:

n! =

{
1 if n < 1

1× 2× . . .× n otherwise

Using induction in the definition, we get:

n! =

{
1 if n < 1

n× (n− 1)! otherwise
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Functional Programming:Factorial

Python Program:

def f a c t o r i a l ( x ) :
i f x ==1:

return 1
else :

return x * f a c t o r i a l ( x −1)

Variable: A named entity which represents (or stores) a
value. Eg: x is the input variable.
Function Declaration: With a keyword def
return keywors: Returns an output of an expression
Condition: A relational expression that evaluates to either
true or false

With Python, one can work in two modes:
Interactive: Executes one statement at a time; the results of
previously executed statements are in active memory.
Compiled: The entire program is interpreted into an
executable object
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Functional Programming:Factorial

Are all mathematical definitions computable? What about the
following?

n! =

{
1 if n < 1

(n+ 1)!/(n+ 1) otherwise

To answer this question, we must first understand how the
program was evaluated.

3! = 3 ∗ (3− 1)! = 3 ∗ (2 ∗ (2− 1)!) = 3 ∗ (2 ∗ (1))

The recursive function evaluation indicates a “defered”
computation!
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What is not an algorithm

sqrt(n) =

{
m if m ∗m = n

0 if @m : m ∗m = n

The above is mathematically valid specification, yet it is not an
algorithm! Why?

The description does not tell us how to evaluate
the function.
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Interpreter Demo

Primitive Operator: +, ∗, /, //,%, . . .

Primitive Relations: =,≥,≤, <,>, ! =, and, or, not
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