
Introduction to Computer Science

Subodh Sharma
svs@cse.iitd.ac.in

https://subodhvsharma.github.io

IIT Delhi, Computer Science Department

1/12

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

2/12

1 History Trivia

2 Last Lecture’s Summary

3 Computing Model
Programming Models

4 Functional Programming
Factorial

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

3/12

History Trivia

Language, Recursion, Transformation: The earliest use of
“formalized” grammar was by Panini (5th century BC) in
Ashtadhyayi.

Computers and Programs:

1 mechanical calculators started with Pascal and refined by
Leibniz. Refer to Pascal’s calculator and Leibniz’s digital
arithmometer!

2 The first forms of a general purpose computer: the analytical
engine in 1837 by Charles Babbage. It was only a design!

3 First general purpose computer by Konrad Zuse in 1941, called
Z3.

4 Ada Lovelace wrote the first computer program to calculate
Bernoulli numbers using the description of Babbage’s machine.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

3/12

History Trivia

Language, Recursion, Transformation: The earliest use of
“formalized” grammar was by Panini (5th century BC) in
Ashtadhyayi.
Computers and Programs:

1 mechanical calculators started with Pascal and refined by
Leibniz. Refer to Pascal’s calculator and Leibniz’s digital
arithmometer!

2 The first forms of a general purpose computer: the analytical
engine in 1837 by Charles Babbage. It was only a design!

3 First general purpose computer by Konrad Zuse in 1941, called
Z3.

4 Ada Lovelace wrote the first computer program to calculate
Bernoulli numbers using the description of Babbage’s machine.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

3/12

History Trivia

Language, Recursion, Transformation: The earliest use of
“formalized” grammar was by Panini (5th century BC) in
Ashtadhyayi.
Computers and Programs:

1 mechanical calculators started with Pascal and refined by
Leibniz. Refer to Pascal’s calculator and Leibniz’s digital
arithmometer!

2 The first forms of a general purpose computer: the analytical
engine in 1837 by Charles Babbage. It was only a design!

3 First general purpose computer by Konrad Zuse in 1941, called
Z3.

4 Ada Lovelace wrote the first computer program to calculate
Bernoulli numbers using the description of Babbage’s machine.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

3/12

History Trivia

Language, Recursion, Transformation: The earliest use of
“formalized” grammar was by Panini (5th century BC) in
Ashtadhyayi.
Computers and Programs:

1 mechanical calculators started with Pascal and refined by
Leibniz. Refer to Pascal’s calculator and Leibniz’s digital
arithmometer!

2 The first forms of a general purpose computer: the analytical
engine in 1837 by Charles Babbage. It was only a design!

3 First general purpose computer by Konrad Zuse in 1941, called
Z3.

4 Ada Lovelace wrote the first computer program to calculate
Bernoulli numbers using the description of Babbage’s machine.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

3/12

History Trivia

Language, Recursion, Transformation: The earliest use of
“formalized” grammar was by Panini (5th century BC) in
Ashtadhyayi.
Computers and Programs:

1 mechanical calculators started with Pascal and refined by
Leibniz. Refer to Pascal’s calculator and Leibniz’s digital
arithmometer!

2 The first forms of a general purpose computer: the analytical
engine in 1837 by Charles Babbage. It was only a design!

3 First general purpose computer by Konrad Zuse in 1941, called
Z3.

4 Ada Lovelace wrote the first computer program to calculate
Bernoulli numbers using the description of Babbage’s machine.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

3/12

History Trivia

Language, Recursion, Transformation: The earliest use of
“formalized” grammar was by Panini (5th century BC) in
Ashtadhyayi.
Computers and Programs:

1 mechanical calculators started with Pascal and refined by
Leibniz. Refer to Pascal’s calculator and Leibniz’s digital
arithmometer!

2 The first forms of a general purpose computer: the analytical
engine in 1837 by Charles Babbage. It was only a design!

3 First general purpose computer by Konrad Zuse in 1941, called
Z3.

4 Ada Lovelace wrote the first computer program to calculate
Bernoulli numbers using the description of Babbage’s machine.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

4/12

Last Lecture’s Summary

What is computing?

What are computing tools?
What are the essential aspects of a computational process?
What are algorithms, programming languages and
programs?

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

4/12

Last Lecture’s Summary

What is computing?
What are computing tools?

What are the essential aspects of a computational process?
What are algorithms, programming languages and
programs?

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

4/12

Last Lecture’s Summary

What is computing?
What are computing tools?
What are the essential aspects of a computational process?

What are algorithms, programming languages and
programs?

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

4/12

Last Lecture’s Summary

What is computing?
What are computing tools?
What are the essential aspects of a computational process?
What are algorithms, programming languages and
programs?

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

5/12

Computing Model:Programming Models

Types of Programming Models:
Functional: A program is specified as amathematical
expression.

Imperative: A program is specified by a sequence of
commands.

Various programming languages support the above models.
Python is an imperative PL. However, we will use it to understand
both the programming models.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

5/12

Computing Model:Programming Models

Types of Programming Models:
Functional: A program is specified as amathematical
expression.
Imperative: A program is specified by a sequence of
commands.

Various programming languages support the above models.
Python is an imperative PL. However, we will use it to understand
both the programming models.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

5/12

Computing Model:Programming Models

Types of Programming Models:
Functional: A program is specified as amathematical
expression.
Imperative: A program is specified by a sequence of
commands.

Various programming languages support the above models.
Python is an imperative PL. However, we will use it to understand
both the programming models.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

5/12

Computing Model:Programming Models

Types of Programming Models:
Functional: A program is specified as amathematical
expression.
Imperative: A program is specified by a sequence of
commands.

Various programming languages support the above models.
Python is an imperative PL. However, we will use it to understand
both the programming models.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

6/12

Programming Models: Primitive Expressions

The simplest objects and operations in the computing model.
These include

Basic data elements: numbers, characters, boolean, etc.

Basic operations: addition, subtraction, multiplication, string
operations, etc.
Naming mechanism: Named expressions to be used
without repetition

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

6/12

Programming Models: Primitive Expressions

The simplest objects and operations in the computing model.
These include

Basic data elements: numbers, characters, boolean, etc.
Basic operations: addition, subtraction, multiplication, string
operations, etc.

Naming mechanism: Named expressions to be used
without repetition

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

6/12

Programming Models: Primitive Expressions

The simplest objects and operations in the computing model.
These include

Basic data elements: numbers, characters, boolean, etc.
Basic operations: addition, subtraction, multiplication, string
operations, etc.
Naming mechanism: Named expressions to be used
without repetition

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

7/12

Programming Models: Combination and Abstraction

Combination: Composition of functions, Inductive
definitions, etc.

Abstraction: Named functions, data structures, classes,
modules, etc.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

7/12

Programming Models: Combination and Abstraction

Combination: Composition of functions, Inductive
definitions, etc.
Abstraction: Named functions, data structures, classes,
modules, etc.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

8/12

Functional Programming:Factorial

Mathematical Definition:

n! =

{
1 if n < 1

1× 2× . . .× n otherwise

Using induction in the definition, we get:

n! =

{
1 if n < 1

n× (n− 1)! otherwise

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

8/12

Functional Programming:Factorial

Mathematical Definition:

n! =

{
1 if n < 1

1× 2× . . .× n otherwise

Using induction in the definition, we get:

n! =

{
1 if n < 1

n× (n− 1)! otherwise

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

9/12

Functional Programming:Factorial

Python Program:

def f a c t o r i a l (x) :
i f x ==1:

return 1
else :

return x * f a c t o r i a l (x −1)

Variable: A named entity which represents (or stores) a
value. Eg: x is the input variable.
Function Declaration: With a keyword def
return keywors: Returns an output of an expression
Condition: A relational expression that evaluates to either
true or false

With Python, one can work in two modes:
Interactive: Executes one statement at a time; the results of
previously executed statements are in active memory.
Compiled: The entire program is interpreted into an
executable object

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

9/12

Functional Programming:Factorial

Python Program:

def f a c t o r i a l (x) :
i f x ==1:

return 1
else :

return x * f a c t o r i a l (x −1)

Variable: A named entity which represents (or stores) a
value. Eg: x is the input variable.

Function Declaration: With a keyword def
return keywors: Returns an output of an expression
Condition: A relational expression that evaluates to either
true or false

With Python, one can work in two modes:
Interactive: Executes one statement at a time; the results of
previously executed statements are in active memory.
Compiled: The entire program is interpreted into an
executable object

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

9/12

Functional Programming:Factorial

Python Program:

def f a c t o r i a l (x) :
i f x ==1:

return 1
else :

return x * f a c t o r i a l (x −1)

Variable: A named entity which represents (or stores) a
value. Eg: x is the input variable.
Function Declaration: With a keyword def

return keywors: Returns an output of an expression
Condition: A relational expression that evaluates to either
true or false

With Python, one can work in two modes:
Interactive: Executes one statement at a time; the results of
previously executed statements are in active memory.
Compiled: The entire program is interpreted into an
executable object

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

9/12

Functional Programming:Factorial

Python Program:

def f a c t o r i a l (x) :
i f x ==1:

return 1
else :

return x * f a c t o r i a l (x −1)

Variable: A named entity which represents (or stores) a
value. Eg: x is the input variable.
Function Declaration: With a keyword def
return keywors: Returns an output of an expression

Condition: A relational expression that evaluates to either
true or false

With Python, one can work in two modes:
Interactive: Executes one statement at a time; the results of
previously executed statements are in active memory.
Compiled: The entire program is interpreted into an
executable object

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

9/12

Functional Programming:Factorial

Python Program:

def f a c t o r i a l (x) :
i f x ==1:

return 1
else :

return x * f a c t o r i a l (x −1)

Variable: A named entity which represents (or stores) a
value. Eg: x is the input variable.
Function Declaration: With a keyword def
return keywors: Returns an output of an expression
Condition: A relational expression that evaluates to either
true or false

With Python, one can work in two modes:
Interactive: Executes one statement at a time; the results of
previously executed statements are in active memory.
Compiled: The entire program is interpreted into an
executable object

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

9/12

Functional Programming:Factorial

Python Program:

def f a c t o r i a l (x) :
i f x ==1:

return 1
else :

return x * f a c t o r i a l (x −1)

Variable: A named entity which represents (or stores) a
value. Eg: x is the input variable.
Function Declaration: With a keyword def
return keywors: Returns an output of an expression
Condition: A relational expression that evaluates to either
true or false

With Python, one can work in two modes:
Interactive: Executes one statement at a time; the results of
previously executed statements are in active memory.
Compiled: The entire program is interpreted into an
executable object

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

9/12

Functional Programming:Factorial

Python Program:

def f a c t o r i a l (x) :
i f x ==1:

return 1
else :

return x * f a c t o r i a l (x −1)

Variable: A named entity which represents (or stores) a
value. Eg: x is the input variable.
Function Declaration: With a keyword def
return keywors: Returns an output of an expression
Condition: A relational expression that evaluates to either
true or false

With Python, one can work in two modes:
Interactive: Executes one statement at a time; the results of
previously executed statements are in active memory.
Compiled: The entire program is interpreted into an
executable object

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

10/12

Functional Programming:Factorial

Are all mathematical definitions computable? What about the
following?

n! =

{
1 if n < 1

(n+ 1)!/(n+ 1) otherwise

To answer this question, we must first understand how the
program was evaluated.

3! = 3 ∗ (3− 1)! = 3 ∗ (2 ∗ (2− 1)!) = 3 ∗ (2 ∗ (1))

The recursive function evaluation indicates a “defered”
computation!

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

11/12

What is not an algorithm

sqrt(n) =

{
m if m ∗m = n

0 if @m : m ∗m = n

The above is mathematically valid specification, yet it is not an
algorithm! Why?

The description does not tell us how to evaluate
the function.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

11/12

What is not an algorithm

sqrt(n) =

{
m if m ∗m = n

0 if @m : m ∗m = n

The above is mathematically valid specification, yet it is not an
algorithm! Why? The description does not tell us how to evaluate
the function.

Introduction to
Computer
Science

Subodh Sharma

History Trivia

Last Lecture’s
Summary

Computing Model
Programming Models

Functional
Programming
Factorial

12/12

Interpreter Demo

Primitive Operator: +, ∗, /, //,%, . . .

Primitive Relations: =,≥,≤, <,>, ! =, and, or, not

	History Trivia
	Last Lecture's Summary
	Computing Model
	Programming Models

	Functional Programming
	Factorial

