Introduction to Computer Science

Subodh Sharma svs@cse.iitd.ac.in
https://subodhvsharma.github.io

IIT Delhi, Computer Science Department

1 Course Logistics

3 Computers, Languages, Algorithms
■ The Long Multiplication Problem

Course Logistics

- All announcement through the course webpage https://subodhvsharma.github.io/course/col100. So regularly visit and check for updates!
- All content-specific discussions on Piazza. You will be added to COL100's Piazza shortly. No individual emails will be entertained.

Name	Email
Ashima Mittal	anz208486@cse.iitd.ac.in
Aarushi Ranjan	anz208846@cse.iitd.ac.in
Saurav Bharti	csz218468@cse.iitd.ac.in
Pushpit Srivastava	bb1180031@dbeb.iitd.ac.in
Kriti Kaushal	mcs212135@cse.iitd.ac.in
Suryakant Shukla	jcs222655@csia.iitd.ac.in
Ritesh Srivastava	jcs222656@csia.iitd.ac.in
Sai Kiran Donkana	jcs222660@csia.iitd.ac.in
Arihant Jammar	jcs222669@csia.iitd.ac.in
Vatsal Agarwal	mcs222056@cse.iitd.ac.in
Akshay Pratap Singh	mcs222058@cse.iitd.ac.in

Siddharth S	mcs222061@cse.iitd.ac.in
Gaurav Chauhan	cs5180406@cse.iitd.ac.in
K Laxman	cs5180408@cse.iitd.ac.in
Mridul Singh	cs5180412@cse.iitd.ac.in
Pratik Prawar	cs5180415@cse.iitd.ac.in
Sachin	$\operatorname{cs5180418@cse.iitd.ac.in~}$
Sparsh Gupta	$\operatorname{cs5180422@cse.iitd.ac.in~}$

We shall work with Python (possibly with browser as an editor as well as the interpreter!)

Unix it is!

Introduction to
Computer
Science
Subodh Sharma

Course Logistics

introduction to

Computing
What is computing?
Computation in
STEM and
Humanities
Example of a
Computation
Understanding the
Computational Process

Compuiers,
Languages,

Algorithms

The Long.
Multiplication Problem

Figure: MAC/PC

What is computing?

- Computing is a process of counting or performing calculation.

What is computing?

- Computing is a process of counting or performing calculation.
- Computing technology may include various tools such as: sticks \& stones, paper \& pencil, abacus, straight edge \& compass, calculator, computer

What is computing?

- Computing is a process of counting or performing calculation.
- Computing technology may include various tools such as: sticks \& stones, paper \& pencil, abacus, straight edge \& compass, calculator, computer
- History of computing is older than the history of computing technology

What is computing?

- Computing is a process of counting or performing calculation.
- Computing technology may include various tools such as: sticks \& stones, paper \& pencil, abacus, straight edge \& compass, calculator, computer
- History of computing is older than the history of computing technology

■ One of the oldest algorithms - Euclid's method to compute gcd

Computation in STEM and Humanities

Introduction to Computer Science

Subodh Sharma

Course Logistics
Introduction to Computing What is computing?
Computation in STEM and Humanities
Example of a Computation Understanding the Computational Process

Computers,
Languages, Algorithms
The Long Multiplication Problem

■ Mechanical/Applied Mechanics: Autonomous vehicles, 3D printing

Computation in STEM and Humanities

■ Mechanical/Applied Mechanics: Autonomous vehicles, 3D printing

- Civil/Material: Structural modeling \& analysis, construction methods, Computational material discovery

Computation in STEM and Humanities

■ Mechanical/Applied Mechanics: Autonomous vehicles, 3D printing

- Civil/Material: Structural modeling \& analysis, construction methods, Computational material discovery
- Chemical/Chemistry/Biochecmical/Biotech: Computational modeling of Transport phenomena: Momentum, energy and mass transfer as unit operations.

Computation in STEM and Humanities

■ Mechanical/Applied Mechanics: Autonomous vehicles, 3D printing

- Civil/Material: Structural modeling \& analysis, construction methods, Computational material discovery
- Chemical/Chemistry/Biochecmical/Biotech: Computational modeling of Transport phenomena: Momentum, energy and mass transfer as unit operations.
- CSE/Electrical: AI-based coding (Eg:CoPilot), IoT, 5G, etc.

Computation in STEM and Humanities

■ Mechanical/Applied Mechanics: Autonomous vehicles, 3D printing

- Civil/Material: Structural modeling \& analysis, construction methods, Computational material discovery
- Chemical/Chemistry/Biochecmical/Biotech: Computational modeling of Transport phenomena: Momentum, energy and mass transfer as unit operations.
- CSE/Electrical: AI-based coding (Eg:CoPilot), IoT, 5G, etc.
- Energy Science: HPC for efficient tapping of renewable energy, sustainable Fusion(?), etc.

Computation in STEM and Humanities

■ Mechanical/Applied Mechanics: Autonomous vehicles, 3D printing

- Civil/Material: Structural modeling \& analysis, construction methods, Computational material discovery
- Chemical/Chemistry/Biochecmical/Biotech: Computational modeling of Transport phenomena: Momentum, energy and mass transfer as unit operations.
- CSE/Electrical: AI-based coding (Eg:CoPilot), loT, 5G, etc.
- Energy Science: HPC for efficient tapping of renewable energy, sustainable Fusion(?), etc.
- Textile: wearable electronic textiles - information gathering garments, Smart textiles responding to the enviroment, etc.

Computation in STEM and Humanities

■ Mechanical/Applied Mechanics: Autonomous vehicles, 3D printing

- Civil/Material: Structural modeling \& analysis, construction methods, Computational material discovery
- Chemical/Chemistry/Biochecmical/Biotech: Computational modeling of Transport phenomena: Momentum, energy and mass transfer as unit operations.
- CSE/Electrical: AI-based coding (Eg:CoPilot), loT, 5G, etc.
- Energy Science: HPC for efficient tapping of renewable energy, sustainable Fusion(?), etc.
- Textile: wearable electronic textiles - information gathering garments, Smart textiles responding to the enviroment, etc.
- Humanities/Management: Linguistics, Cognitive science, Politics, etc.
\vdots

Example of a Computation: The Computation Tool

Introduction to
Computer
Science
Subodh Sharma

Course Logistics
Introduction to
Computing
What is computing?
Computation in
STEM and
Humanities
Example of a
Computation
Understanding the Computational Process

- Pick a tool for computation: Straight-edge and Compass

Example of a Computation: The Computation Tool

- Pick a tool for computation: Straight-edge and Compass - Straight-edge: It is unmarked! Therefore, cannot specify lengths, but can specify lines rays and line segments.

Example of a Computation: The Computation Tool

- Pick a tool for computation: Straight-edge and Compass
- Straight-edge: It is unmarked! Therefore, cannot specify lengths, but can specify lines rays and line segments.
- Compass: Can define arcs and circles; Can specify arbitrary non-zero lengths.

Example of a Computation: The Problem

- Doubling a Square: Given a square ABCD of side $a>0$

Example of a Computation: The Problem

- Doubling a Square: Given a square ABCD of side $a>0$
- Computation steps:

Example of a Computation: The Problem

- Doubling a Square: Given a square ABCD of side $a>0$
- Computation steps:

Example of a Computation: The Problem

- Doubling a Square: Given a square ABCD of side $a>0$
- Computation steps:

1 Draw a diagonal $\overline{A C}$.

Example of a Computation: The Problem

- Doubling a Square: Given a square ABCD of side $a>0$
- Computation steps:

1 Draw a diagonal $\overline{A C}$.
Example of a
Computation
2 Complete the square ACEF.

- Step (1) above is a primitive operation.

Example of a Computation: The Problem

- Doubling a Square: Given a square ABCD of side $a>0$
- Computation steps:

1 Draw a diagonal $\overline{A C}$.
2 Complete the square ACEF.

- Step (1) above is a primitive operation.
- However step (2) is a complex operation that requires further computation (called the refinement of the computational process).

Example of a Computation: Refinement

Introduction to
Computer
Science
Subodh Sharma

Course Logistics
Introduction to
Computing
What is computing?
Computation in
STEM and
Humanites
Example of a
Computation
Understanding the Computational Process

Computers,
Languages,

Algorithms

The Long
Mulipipication Problem

- Square: Given a line segment $\overline{P Q}$, s.t. $|\overline{P Q}|=b$, construct a square of length b.

Example of a Computation: Refinement

- Square: Given a line segment $\overline{P Q}$, s.t. $|\overline{P Q}|=b$, construct a square of length b.
1 Construct two lines l_{1} and l_{2} perpendicular to $\overline{P Q}$ passing through P and Q, respectively.

Example of a Computation: Refinement

- Square: Given a line segment $\overline{P Q}$, s.t. $|\overline{P Q}|=b$, construct a square of length b.

1 Construct two lines l_{1} and l_{2} perpendicular to $\overline{P Q}$ passing through P and Q, respectively.
2. On the same side of $\overline{P Q}$ mark points R on l_{1} and S on l_{2} such that $P R=P Q=Q S$.

Example of a Computation: Refinement

- Square: Given a line segment $\overline{P Q}$, s.t. $|\overline{P Q}|=b$, construct a square of length b.

1 Construct two lines l_{1} and l_{2} perpendicular to $\overline{P Q}$ passing through P and Q, respectively.
2. On the same side of $\overline{P Q}$ mark points R on l_{1} and S on l_{2} such that $P R=P Q=Q S$.
3 Draw $\overline{R S}$. Claim: $P Q S R$ is of side b.

Example of a Computation: Refinement

- Square: Given a line segment $\overline{P Q}$, s.t. $|\overline{P Q}|=b$, construct a square of length b.

1 Construct two lines l_{1} and l_{2} perpendicular to $\overline{P Q}$ passing through P and Q, respectively.
2. On the same side of $\overline{P Q}$ mark points R on l_{1} and S on l_{2} such that $P R=P Q=Q S$.
3 Draw $\overline{R S}$. Claim: $P Q S R$ is of side b.
■ This time step (1) is complex and step (2) is primitive.

Example of a Computation: Refinement

- Square: Given a line segment $\overline{P Q}$, s.t. $|\overline{P Q}|=b$, construct a square of length b.

1 Construct two lines l_{1} and l_{2} perpendicular to $\overline{P Q}$ passing through P and Q, respectively.
2. On the same side of $\overline{P Q}$ mark points R on l_{1} and S on l_{2} such that $P R=P Q=Q S$.
3 Draw $\overline{R S}$. Claim: $P Q S R$ is of side b.
■ This time step (1) is complex and step (2) is primitive.
■ Perpendiculars: Subsequent refinement of step (1)

Example of a Computation: Refinement

- Square: Given a line segment $\overline{P Q}$, s.t. $|\overline{P Q}|=b$, construct a square of length b.

1 Construct two lines l_{1} and l_{2} perpendicular to $\overline{P Q}$ passing through P and Q, respectively.
2. On the same side of $\overline{P Q}$ mark points R on l_{1} and S on l_{2} such that $P R=P Q=Q S$.
3 Draw $\overline{R S}$. Claim: $P Q S R$ is of side b.
■ This time step (1) is complex and step (2) is primitive.
■ Perpendiculars: Subsequent refinement of step (1)
1 Choose a length $c>0$.

Example of a Computation: Refinement

- Square: Given a line segment $\overline{P Q}$, s.t. $|\overline{P Q}|=b$, construct a square of length b.
1 Construct two lines l_{1} and l_{2} perpendicular to $\overline{P Q}$ passing through P and Q, respectively.

2. On the same side of $\overline{P Q}$ mark points R on l_{1} and S on l_{2} such that $P R=P Q=Q S$.
3 Draw $\overline{R S}$. Claim: $P Q S R$ is of side b.
■ This time step (1) is complex and step (2) is primitive.
■ Perpendiculars: Subsequent refinement of step (1)
1 Choose a length $c>0$.
2 With P as a centre mark off arcs Y and Z on either side of P.

Example of a Computation: Refinement

- Square: Given a line segment $\overline{P Q}$, s.t. $|\overline{P Q}|=b$, construct a square of length b.
1 Construct two lines l_{1} and l_{2} perpendicular to $\overline{P Q}$ passing through P and Q, respectively.

2. On the same side of $\overline{P Q}$ mark points R on l_{1} and S on l_{2} such that $P R=P Q=Q S$.
3 Draw $\overline{R S}$. Claim: $P Q S R$ is of side b.
■ This time step (1) is complex and step (2) is primitive.
■ Perpendiculars: Subsequent refinement of step (1)
1 Choose a length $c>0$.
2 With P as a centre mark off arcs Y and Z on either side of P.
3 Draw circles of radius $2 c$ from centre points Y and Z.

Example of a Computation: Refinement

- Square: Given a line segment $\overline{P Q}$, s.t. $|\overline{P Q}|=b$, construct a square of length b.
1 Construct two lines l_{1} and l_{2} perpendicular to $\overline{P Q}$ passing through P and Q, respectively.

2. On the same side of $\overline{P Q}$ mark points R on l_{1} and S on l_{2} such that $P R=P Q=Q S$.
3 Draw $\overline{R S}$. Claim: $P Q S R$ is of side b.
■ This time step (1) is complex and step (2) is primitive.
■ Perpendiculars: Subsequent refinement of step (1)
1 Choose a length $c>0$.
2 With P as a centre mark off arcs Y and Z on either side of P.
3 Draw circles of radius $2 c$ from centre points Y and Z.
4 Join the points of intersection of the two circles.

Example of a Computation: Correctness?

Introduction to

 Computer Science- Diagonal $\overline{A C}$ length $=\sqrt{2} a$

Example of a Computation: Correctness?

introduction to

 Computer Science- Diagonal $\overline{A C}$ length $=\sqrt{2} a$

Humanities
Example of a
Computation
Understanding the Computational Process

- Area of $\mathrm{ACEF}=2 a^{2}$

Example of a Computation: Correctness?

- Diagonal $\overline{A C}$ length $=\sqrt{2} a$
- Area of ACEF $=2 a^{2}$
- Where the two circles drawn from Y and Z of radius $2 c$ is perpendicular to $Y Z$.

Understanding the Computational Process: Essential Ingredients

■ Primitive operations \& expressions: These represent the simplest objects of the computational process. Eg: Drawing a line, drawing an arc etc.

Understanding the Computational Process: Essential Ingredients

■ Primitive operations \& expressions: These represent the simplest objects of the computational process. Eg: Drawing a line, drawing an arc etc.

- Methods of combination: This specifies how primitive expressions and objects can be combined to form compound expressions and objects. Eg: Drawing a perpendicular.

Understanding the Computational Process: Essential Ingredients

■ Primitive operations \& expressions: These represent the simplest objects of the computational process. Eg: Drawing a line, drawing an arc etc.

- Methods of combination: This specifies how primitive expressions and objects can be combined to form compound expressions and objects. Eg: Drawing a perpendicular.
- Methods of abstraction: Naming compound objects be named and used/manipulated as a unit. Eg: square-construction process from the diagonal of a given square. It is useful in:

Understanding the Computational Process: Essential Ingredients

■ Primitive operations \& expressions: These represent the simplest objects of the computational process. Eg: Drawing a line, drawing an arc etc.

- Methods of combination: This specifies how primitive expressions and objects can be combined to form compound expressions and objects. Eg: Drawing a perpendicular.
- Methods of abstraction: Naming compound objects be named and used/manipulated as a unit. Eg: square-construction process from the diagonal of a given square. It is useful in:
1 separating logical subproblems. Eg: drawing a perpendicular from a point is logically separate from drawing a square on a line segment.

Understanding the Computational Process: Essential Ingredients

- Primitive operations \& expressions: These represent the simplest objects of the computational process. Eg: Drawing a line, drawing an arc etc.
- Methods of combination: This specifies how primitive expressions and objects can be combined to form compound expressions and objects. Eg: Drawing a perpendicular.
- Methods of abstraction: Naming compound objects be named and used/manipulated as a unit. Eg: square-construction process from the diagonal of a given square. It is useful in:
1 separating logical subproblems. Eg: drawing a perpendicular from a point is logically separate from drawing a square on a line segment.
2 Avoiding repetitions in specifying solutions. Eg: drawing perpendiculars from two separate points are instances of the same computational process.

Computers, Languages, Algorithms

Introduction to Computer Science

Subodh Sharma

Course Logistics
Introduction to
Computing
What is computing?
Computation in
STEM and
Humanities
Example of a Computation
Understanding the Computational Process

Computers, Languages, Algorithms
The Long
Multipication Problem

- Computer: Yet another tool for performing computation.

Computers, Languages, Algorithms

- Computer: Yet another tool for performing computation.
- Algorithm: It is a finite sequence of well-defined instructions (Eg: combination of primitives of a computation tool) to solve a problem.

Computers, Languages, Algorithms

- Computer: Yet another tool for performing computation.
- Algorithm: It is a finite sequence of well-defined instructions (Eg: combination of primitives of a computation tool) to solve a problem.
1 It works with a definite input and output

Computers, Languages, Algorithms

- Computer: Yet another tool for performing computation.
- Algorithm: It is a finite sequence of well-defined instructions (Eg: combination of primitives of a computation tool) to solve a problem.
1 It works with a definite input and output
2 It is unambiguous (Eg: How would one evaluate $E_{1}+E_{2} * E_{3}$)

Computers, Languages, Algorithms

- Computer: Yet another tool for performing computation.
- Algorithm: It is a finite sequence of well-defined instructions (Eg: combination of primitives of a computation tool) to solve a problem.
1 It works with a definite input and output
2 It is unambiguous (Eg: How would one evaluate $E_{1}+E_{2} * E_{3}$)
3 The number of steps executed to arrive at a solution is finite

Computers, Languages, Algorithms

- Computer: Yet another tool for performing computation.
- Algorithm: It is a finite sequence of well-defined instructions (Eg: combination of primitives of a computation tool) to solve a problem.
1 It works with a definite input and output
2 It is unambiguous (Eg: How would one evaluate $E_{1}+E_{2} * E_{3}$)
3 The number of steps executed to arrive at a solution is finite
- Programming Language: It is a vocabulary (with a syntax also called the grammar of the language), which is used to

NOTE: The "form" is usually a Program. The program is developed by conforming to the grammatical rules of the language.

Computers, Languages, Algorithms

- Computer: Yet another tool for performing computation.
- Algorithm: It is a finite sequence of well-defined instructions (Eg: combination of primitives of a computation tool) to solve a problem.
1 It works with a definite input and output
2 It is unambiguous (Eg: How would one evaluate $E_{1}+E_{2} * E_{3}$)
3 The number of steps executed to arrive at a solution is finite
- Programming Language: It is a vocabulary (with a syntax also called the grammar of the language), which is used to
1 Translate the algorithm into a 'form"
NOTE: The "form" is usually a Program. The program is developed by conforming to the grammatical rules of the language.

Computers, Languages, Algorithms

- Computer: Yet another tool for performing computation.
- Algorithm: It is a finite sequence of well-defined instructions (Eg: combination of primitives of a computation tool) to solve a problem.

1 It works with a definite input and output
2 It is unambiguous (Eg: How would one evaluate $E_{1}+E_{2} * E_{3}$)
3 The number of steps executed to arrive at a solution is finite

- Programming Language: It is a vocabulary (with a syntax also called the grammar of the language), which is used to
1 Translate the algorithm into a 'form"
2 Communicate with the computation machine NOTE: The "form" is usually a Program. The program is developed by conforming to the grammatical rules of the language.

Computers, Languages, Algorithms

- Computer: Yet another tool for performing computation.
- Algorithm: It is a finite sequence of well-defined instructions (Eg: combination of primitives of a computation tool) to solve a problem.
1 It works with a definite input and output
2 It is unambiguous (Eg: How would one evaluate $E_{1}+E_{2} * E_{3}$)
3 The number of steps executed to arrive at a solution is finite
- Programming Language: It is a vocabulary (with a syntax also called the grammar of the language), which is used to
1 Translate the algorithm into a 'form"
2 Communicate with the computation machine
NOTE: The "form" is usually a Program. The program is developed by conforming to the grammatical rules of the language.
- Computing Tool: A programming langauage and the computer together form a computing tool.

Computers, Languages, Algorithms

- Computer: Yet another tool for performing computation.
- Algorithm: It is a finite sequence of well-defined instructions (Eg: combination of primitives of a computation tool) to solve a problem.

1 It works with a definite input and output
2 It is unambiguous (Eg: How would one evaluate $E_{1}+E_{2} * E_{3}$)
3 The number of steps executed to arrive at a solution is finite

- Programming Language: It is a vocabulary (with a syntax also called the grammar of the language), which is used to
1 Translate the algorithm into a 'form"
2 Communicate with the computation machine
NOTE: The "form" is usually a Program. The program is developed by conforming to the grammatical rules of the language.
- Computing Tool: A programming langauage and the computer together form a computing tool.
- Thus, each program uses only the primitives of the computing tool.

The Long Multiplication Problem

- Notation: Let $a=\sum_{i=0}^{m} 10^{i} a_{i}$ and $b=\sum_{j=0}^{n} 10^{j} b_{j}$ be two numbers with m and n digits, respectively.

Figure: Long Multiplication

The Long Multiplication Problem

Introduction to
Computer Science

Subodh Sharma

Course Logistics
Introduction to
Computing
What is computing?
Computation in
STEM and
Humanities
Example of a
Computation
Understanding the
Computational Process

Computers,
Languages,
Algorithms
The Long
Multiplication
Problem

- What is the algorithm for this problem?

The Long Multiplication Problem

Introduction to
Computer
Science
Subodh Sharma

Course Logistics
Introduction to
Computing
What is computing?
Computation in
STEM and
Humanities
Example of a
Computation
Understanding the
Computational Process

Computers,
Languages,
Algorithms

- What is the algorithm for this problem?
- How does one guarantee that the method is correct?

The Long Multiplication Problem

Introduction to
Computer
Science
Subodh Sharma

Course Logistics
Introduction to
Computing
What is computing?
Computation in
STEM and
Humanities
Example of a
Computation
Understanding the Computational Process

Computers,
Languages, Algorithms

- What is the algorithm for this problem?
- How does one guarantee that the method is correct?
- How well does it perform with other methods of multiplication?

The Long Multiplication Problem

Introduction to
Computer
Science
Subodh Sharma

Course Logistics
Introduction to
Computing
What is computing?
Computation in
STEM and
Humanities
Example of a
Computation
Understanding the Computational Process

Computers,
Languages, Algorithms

- What is the algorithm for this problem?
- How does one guarantee that the method is correct?
- How well does it perform with other methods of multiplication?

The Long Multiplication Problem

Introduction to
Computer
Science
Subodh Sharma
Course Logistics
Introduction to
Computing
What is computing?
Computation in
STEM and
Humanities
Example of a
Computation
Understanding the Computational Process

Computers,
Languages,

Algorithms

- What is the algorithm for this problem?
- How does one guarantee that the method is correct?
- How well does it perform with other methods of multiplication?

$$
\begin{aligned}
a \times b & =a \times \sum_{j=0}^{n} 10^{j} b_{j} \\
& =a b_{0}+a b_{1} \cdot 10+\ldots+a b_{n} \cdot 10^{n}
\end{aligned}
$$

The Long Multiplication Problem

- What is the algorithm for this problem?
- How does one guarantee that the method is correct?
- How well does it perform with other methods of multiplication?

$$
\begin{aligned}
a \times b & =a \times \sum_{j=0}^{n} 10^{j} b_{j} \\
& =a b_{0}+a b_{1} \cdot 10+\ldots+a b_{n} \cdot 10^{n}
\end{aligned}
$$

Algorithm:

$$
\text { LongMult }(a, b)= \begin{cases}a b_{0} & \text { if } b<10 \\ a b_{0}+\operatorname{LongMult}\left(a, b^{\prime}\right) .10 & \text { if } b \geq 10\end{cases}
$$

where $b_{0}=b \bmod 10$ and $b^{\prime}=b \operatorname{div} 10$

- Note carefully the application of abstraction and combination in the above algorithm!

The Long Multiplication Problem: Correctness

Introduction to
Computer
Science
Subodh Sharma
Course Logistics
Introduction to
Computing
What is computing?
Computation in
STEM and
Humanities
Example of a
Computation
Understanding the
Computational Process

Computers,
Languages, Algorithms
The Long Multiplication Problem

- Proof Statement: LongMult $(a, b)=a \times b$

The Long Multiplication Problem: Correctness

Introduction to
Computer
Science
Subodh Sharma

Course Logistics

Introduction to

Computing
What is computing?
Computation in
STEM and
Humanities
Example of a
Computation
Understanding the Computational Process

Computers,
Languages, Algorithms

- Proof Statement: LongMult $(a, b)=a \times b$
- Basis: When $n=0, b=b_{0}$ and LongMult $(a, b)=a b_{0}=a \times b$.

The Long Multiplication Problem: Correctness

- Proof Statement: LongMult $(a, b)=a \times b$
- Basis: When $n=0, b=b_{0}$ and LongMult $(a, b)=a b_{0}=a \times b$.
- Induction Hypothesis: Assume LongMult $(a, c)=a \times c$ for all c which have less than $n+1$ digits.

The Long Multiplication Problem: Correctness

- Proof Statement: LongMult $(a, b)=a \times b$
- Basis: When $n=0, b=b_{0}$ and LongMult $(a, b)=a b_{0}=a \times b$.
- Induction Hypothesis: Assume LongMult $(a, c)=a \times c$ for all c which have less than $n+1$ digits.
- Induction Step:

$$
\begin{aligned}
\operatorname{LongMult}(a, b) & =a b_{0}+\operatorname{LongMult}(a, b \operatorname{div} 10) \\
& =a b_{0}+a b^{\prime} .10 \quad(\text { by I.H. }) \\
& =a\left(b_{0}+b^{\prime} .10\right) \\
& =a \times b \quad(\text { by definition of b) }
\end{aligned}
$$

